Secrets to Landing Your Next ,Vofi

Wiiey Collml!ef



Publisher: Robert Ipsen

Editor: Marjorie Spencer

Assistant Editor: Margaret Hendrey

Managing Editor: John Atkins

Text Design & Composition: Publishers’ Design and Production Services, Inc.

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper. ©

Copyright © 2000 by John Mongan, Noah Suojanen. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-
4744. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212)
850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

Mongan, John, 1976

Programming interviews exposed : secrets to landing your next job / John Mongan,

Noah Suojanen.
p- cm

“Wiley computer publishing.”

ISBN 0-471-38356-2 (pbk. : alk. paper)

1. Employment interviewing. 2. Computer programming—Vocational guidance.
L. Suojanen, Noah, 1978~ II. Title.
HF5549.5.16 M664 2000
650.14—dc21 00-028304

Printed in the United States of America.

10987654321




Preface

Acknowledgments

Chapter 1:

Chapter 2:

Chapter 3:

The Job Application Process
Contacting Companies
Screening Interviews

On-site Interviews

Dress

Recruiters

Offers and Negotiation
Accepting and Rejecting Offers

Approaches to Programming Problems
The Process

About the Questions

Solving the Questions

When You Get Stuck

Analysis of the Solution

Linked Lists

Singly Linked Lists
Modifying the Head Pointer
Traversing
Insertion and Deletion

Xi

oooxmmus»p-»—--ﬁ

— s = R e e
SO > N S TU sy e

N
W

NNDNIN
N O U



viii Contents
Doubly Linked lists 28
Circular Linked Lists 29
Problem: Stack Implementation 29
Problem: Maintain Linked List Tail Pointer 36
Problem: Bugs in RemoveHead 41
Problem: Mth-to-Last Element of a Linked List 43
Problem: List Flattening 47
Problem: Null Or Cycle 53
Chapter 4: Trees and Graphs 59
Trees 59
Binary Trees 61
Binary Search Trees 62
Lookup 62
Heaps 65
Common Searches 65
Breadth-First Search 65
Depth-First Search 66
Traversals 66
Graphs 66
Problem: Preorder Traversal 67
Problem: Preorder Traversal, No Recursion 69
Problem: Lowest Common Ancestor 71
Chapter 5: Arrays and Strings 75
Arrays 75
C/C++ 77
Java 77
Perl 78
Strings 78
C 79
C++ 79
Java 79
Perl 80
Problem: First Non-repeated Character 80
Problem: Remove Specified Characters 83
Problem: Reverse Words 87
92

Problem: Integer/String Conversions



Contents ix
Chapter 6: Recursion 101
Problem: Binary Search 106
Problem: Permutations of a String 108
Problem: Combinations of a String 113
Problem: Telephone Words 117
Chapter 7: Other Programming Topics 125
Graphics 125
Bit Operators 127
Structured Query Language (SQL) 129
Concurrency 132
Problem: Eighth of a Circle 135
Problem: Rectangle Overlap 137
Problem: Big-endian or Little-endian 142
Problem: Number of Ones 145
Problem: Simple SQL 148
Problem: Company and Employee Database 148
Problem: Max, No Aggregates 150
Problem: Producer/Consumer 152
Chapter 8: Counting, Measuring, and Ordering Puzzles 159
Problem: Count Open Lockers 164
Problem: Three Switches 166
Problem: Bridge Crossing 167
Problem: Heavy Marble 171
Chapter 9: Graphical and Spatial Puzzles 177
Problem: Boat and Dock 178
Problem: Counting Cubes 181
Problem: The Fox and Duck 185
Problem: Burning Fuses 188
Problem: Escaping the Train 189
Chapter 10: Knowledge-Based Questions 193
Resumes 193
The Questions 194
Problem: C++ and Java 195




Contents

Chapter 11:

Appendix:

Index

Problem: Including Files

Problem: Storage Classes

Problem: Friend Class

Problem: Class and Struct

Problem: Parent Class and Child Class
Problem: Argument Passing

Problem: Macros and Inline Functions
Problem: Inheritance

Problem: Object-Oriented Programming
Problem: Thread Programming Issues
Problem: Garbage Collection

Problem: 32-Bit Operating System
Problem: Network Performance

Problem: Faster Disk Access

Problem: Database Advantages

Problem: Cryptography

Problem: New Cryptography Algorithms
Problem: Hashtables and Binary Search Trees

Non-Technical Questions

The Questions

Question: What do you want to do?

Question: What is your favorite programming language?
Question: What is your work style?

Question: Tell me about your experience.

Question: What are your career goals?

Question: Why are you looking to change jobs?
Question: How much money do you want to make?
Question: What is your salary history?

Question: Why should we hire you?

Question: Do you have any questions for me?

Resumes

196
196
197
197
198
199
201
202
203
204
205
207
207
207
208
209
210
210

213
214
215
216
216
217
217
217
218
221
221
222

223
2345



If you're like us, you don't usually read prefaces. This one has some use-
ful information in it, though, so we hope you’ll make an exception. If
you're still going to skip the preface, here’s what you really need to know:
You'll get as much out of this book as you put into it. If you read this
book cover to cover, you'll learn something, but not nearly as much as
you would if you take some time trying to work through the problems on
your own before you read the answers.

This book will help prepare you for the interviews you will face when
seeking a job in programming, development, technical consulting, or any
other field that warrants a programming interview. Programming inter-
views bear little resemblance to those described in traditional job-hunting
and interview books. They consist almost entirely of programming prob-
lems, puzzles, and technical questions about computers. We will discuss
each of the kinds of problems you are likely to encounter and illustrate
how they are best approached using questions from real interviews as
examples.

At this point you may be wondering who we are and what gives us the
authority to write this book. We're both recent graduates who’ve been
through a lot of interviews in the past few years. We've interviewed for
jobs ranging from technical consulting with large established companies
to writing device drivers for start-ups. This book is based on the experi-
ences and observations we’ve taken from those interviews—what yielded
offers and what didn’t. We believe that this is the best possible basis for a
book like this. Rather than give you some HR exec’s idea of how inter-
viewing should be done’ or a headhunter’s impression of how it might

'For the record, we don’t think that the way interviewing is done today is necessarily the way it
should be done. The current mode puts too much emphasis on ability to solve puzzles and




xii

Preface

be done, we will tell you what interviews are really like at America’s top
software and computer companies and what you need to do to get the job
you want.

To that end, we haven’t made up any of the questions in this book.
Every last one of them has come from a recent interview. The distribu-
tions of problem type and difficulty are similar to what you should expect
to encounter in your interviews. We must emphasize that the problems
presented in this book are a representative sample of the questions asked in
interviews, not a comprehensive compilation. Reading this book straight
through and memorizing the answers would completely miss the point.
You may be asked some of the questions that appear in this book, but you
should not expect that. A large and constantly changing body of questions
is asked, and any intelligent interviewer who has seen this book will
never again use any of the questions that appear here. On the other hand,
interview questions encompass relatively few topic areas and types of
questions, and these rarely change. If you work on learning to solve not
just the specific problems we present, but the types of problems we pre-
sent, you'll be able to handle anything they throw at you in an interview.

We’ve taken a couple of steps to facilitate the objective of improving
your problem-solving skills. First, where appropriate, we provide reviews
of important topics before we present questions on those topics. Second,
instead of merely giving answers to the problems, we illustrate the prob-
lem-solving process from beginning to solution. We’ve found that most
textbooks and nearly all puzzle books take a different approach to exam-
ples: They begin with a problem, go immediately to the answer, and then
explain why the answer is correct. In our experience, the result is that the
reader may understand the particular answer and why it’s right, but is
left with no clue as to how the author came up with that solution or how
a similar problem might be solved. We hope that our step-by-step
approach to solutions will address this problem, helping you to under-
stand not only the answers but how you get the answers.

Learning by watching is never as effective as learning by doing. If you
want to get the most out of this book, you will have to work out the prob-
lems yourself. We suggest the following method. After you read a prob-
lem, put the book down and try to work out the solution. If you get stuck,
start reading the solution. We never blurt out the answer at the beginning,
80 you don’t have to worry that we’re going to give away the solution.
Read just far enough to get the hint you need, then put down the book

familiarity with a relatively limited body of knowledge, and it generally fails to measure a lot of
the skills that are critical to success in industry.



Preface

xiii

and keep working. Repeat this as necessary. The more of the solution you
work out yourself, the better your understanding will be. In addition, this
method closely resembles the actual interview experience, where you will
have to solve the problems yourself, but the interviewer will give you
hints when you get stuck.

Programming is a difficult and technical art. It would be impossible to
teach everything you need to know about computers and programming
in one book. Therefore, we’ve had to make some assumptions about who
you are. We assume that you have a background in computers equivalent
to at least the first year or two of a computer science degree. Specifically,
we expect that you are comfortable with programming in C, that you've
had some experience with object-oriented programming in C++ or per-
haps Java, and that you know the fundamentals of computer architecture
and computer science theory. These are effectively the minimum require-
ments for a general development job, so most interviewers will have simi-
lar expectations. If you find yourself lacking in any of these areas, you
should seriously consider seeking more education before starting your job
search and interviews.

It’s also possible that you have a great deal more computer knowledge
and experience than what we’ve described as the minimum requirements.
If so, you may be particularly interested in some of the more advanced
topics we include, such as databases, graphics, concurrency, and Perl.
However, don’t ignore the basic topics and questions, no matter how
much experience you have. Interviewers tend to start with the fundamen-
tals regardless of what’s on your resume.

We have made every effort to ensure that all of the information in this
book is correct. All of the code has been compiled and tested. Never-
theless, as you probably know all too well from your own programs, a
few bugs and errors are inevitable. As we become aware of such prob-
lems, we will post corrections at http://www.wiley.com/compbooks/
programminginterview/.

We're confident that you’ll find this book useful in getting the job you
want. We hope that you may also find it an entertaining exploration of
some clever puzzles in your chosen profession. If you'd like to tell us
about your reaction to our book, your thoughts on any particular problem
or topic, or a problem from one of your recent interviews, we’d love to
hear from you. Please e-mail us at programminginterview@wiley.com.

Go find a killer job!
John and Noah



Programming Interviews
Exposed




The Job Application

Interviewing and recruiting procedures are similar at most tech compa-
nies. The more prepared you are for what you will encounter, the more
successful you will be. This chapter will familiarize you with the entire
job search process, from contacting companies to starting your new job,
so you won’t have to write your first few application attempts off as
learning experiences. Hiring procedures at technical companies are often
substantially different from those followed by more traditional firms, so
you may find this information useful even if you've spent some time in
the working world.

Contacting Companies

The first step in getting a job is making contact with companies you're
interested in working for. Networking (the social kind) is the best way to
find jobs. Tell all your friends about what kind of job you're looking for.
Even if they don’t work for the kinds of companies that might hire you,
they probably know people who do. Your resume, coming from “Susan’s
friend” or “Bill’s neighbor,” is sure to get more careful consideration than




Chapter 1

the hundreds of anonymous resumes that come flooding in from
strangers. Once you have a contact at a company, it’s up to you to make
the most of it.

It’s tempting to call up a contact and say, “Hi, I'd like to speak with you
about getting a job.” Presumably, your contact already knows that this is
the ultimate reason that you're calling, so cutting to the chase may seem
reasonable. This approach, though, is tactless and likely to be unsuccess-
ful. Your contact may find it arrogant or presumptive that you would
assume his company needs you before you've even heard about the com-
pany or its current needs. For best results, you need to be more circum-
spect. Start by setting up a time to speak. You don’t want to annoy your
contact by trying to talk with him at an inconvenient time. When you do
speak to your contact, begin by asking about the company and finding
out what it does. If it sounds like a good place to work, ask about open-
ings. If an opening sounds ideal for you, explain why you believe that
you would be a good match. Finally, thank the person for his time and
ask if you can send a resume or if there’s another person you can speak
with about the openings.

Although networking through a contact with a company provides the
highest probability of success, there are a number of other possibilities.
Especially when labor markets are tight, many firms use outside
recruiters known as headhunters? to help them find candidates. If you list
yourself with a headhunter, he will assist you with your job search and
call you when he learns of an opening that matches your skill set. Some
headhunters are more helpful than others, so ask around to see if anyone
you know has recommendations. If you can’t locate a headhunter this
way, you can search the Web for headhunters, recruiters, or staffing ser-
vices. You can check out a prospective headhunter by asking for refer-
ences, but be aware that headhunters deal with so many people that even
those who frequently do a poor job will have 5 or 10 satisfied clients who
serve as references. Avoid headhunters who want to act as your sole
agent or want you to pay them fees. Reputable headhunters understand
that they are only a part of your job search and that their compensation
comes from employers, not applicants.

When you work with a headhunter, it’s important to understand his
motivation. Headhunters get paid only when an applicant they‘ve

'The term “headhunter” is used universally by applicants and employers, but many of those to
whom the term is applied find it insulting. Therefore, it’s probably best not to use the word
“headhunter” when talking to one.



The Job Application Process

3

referred is hired. It is therefore in a headhunter’s best interests to get as
many people as possible into as many jobs as possible as quickly as pos-
sible. A headhunter has no financial incentive to find you the best possi-
ble job—or to find a company the best possible applicant, for that matter.
If you recognize that a headhunter is in business for the purpose of mak-
ing a living, not for the purpose of helping you, you are less likely to be
surprised or disappointed by your experiences. This is not to suggest
that headhunters are bad people or that as a rule they take advantage

of applicants or companies. Headhunters can be very helpful and useful,
but you must not expect them to look out for your interests above

their own.

You can also try contacting companies directly. The Internet is the best
medium for this approach. You may know of some companies you’'d like
to work for, or you can search the Web to find companies in your area.
Most companies’ Web pages have instructions for submitting resumes. If
the Web site lists specific openings, read through them and submit your
resume specifically for the openings you're interested in. In many compa-
nies, resumes targeted at a specific job opportunity are forwarded to the
hiring manager, while those that don’t mention a specific opening lan-
guish in the human resources database. If there aren’t any directions for
submitting your resume, look for an e-mail address to which you can
send it. Send your resume as both plain text in the body of the e-mail (so
the recipient can read it without having to do any work) and as an
attached Microsoft Word file (so the recipient can print a pretty copy). Not
everyone upgrades to the newest version of Word, so convert your
resume file so that it can be read by older versions of Word, and be
absolutely certain that your resume isn’t carrying any macro viruses.
Approaching a company directly like this is a bit of a long shot, but it
takes so little time and effort that you have nothing to lose.

Job fairs are an easy way to learn about and make contact with a lot of
companies without much effort. Your chances of success with any one
particular company at a job fair are low because each company sees so
many applicants, but given the number of companies at a job fair, your
overall odds may still be favorable. If you collect business cards at the job
fair and follow up with people afterward, you can distinguish yourself
from the rest of the job fair crowd.

You can also try more traditional job search methods, like newspaper
classified ads or their electronic equivalents, the Internet job databases. If
they are available to you, college career centers, alumni organizations,
and professional associations can also be helpful in finding jobs.




F"——

4 Chapter 1

Screening Interviews

If someone is sufficiently impressed by your resume that he wants to talk
to you, the next step is a screening interview. This interview is usually
conducted by phone and lasts about 30 minutes. Screening interviews
may also take place on the spot at a job fair or on campus as part of a col-
lege recruiting process.

The screening interview has two major objectives. First, the interviewer
wants to make sure that you're interested in doing the job he is hiring for,
that you have the skills needed for the position, and that you're willing to
accept any logistical requirements of the position, like relocation or travel.
If these problems can be ruled out, the interviewer will usually ask you a
few knowledge-based questions. These are designed to eliminate appli-
cants who have inflated their resumes or are weak in skills that are key to
the position. If you successfully answer these questions, the interviewer
will get back to you, usually within a week, to invite you to schedule an
interview day on site at the company’s office.

On-site Interviews

Your performance in on-site interviews is the biggest factor in determin-
ing whether you get an offer. These interviews consist mostly of a variety
of technical questions: problems requiring you to implement a simple
program or function; questions that test your knowledge of computers,
languages, and programming; and mathematics and logic puzzles. The
majority of this book focuses on helping you answer these questions and
succeed in your interviews.

Your on-site interviews usually last either a half day or a full day, and
they typically consist of 3 to 5 interviews of 30 to 60 minutes each. Your
interviewers are often the members of the team you would be working
with if you were hired. Most companies have a rule that any interviewer
can block an applicant from being hired, so all of your interviews are
important. Sometimes you may interview with two separate teams on the
same day. Usually each group you interview with will make a separate
decision about giving you an offer.

The company will usually take you out for lunch midway through your
interview day. A free lunch at a nice restaurant is certainly something to
be enjoyed, but don't let your guard down completely. If you make a neg-
ative impression at lunch, you may lose your offer. Be polite, and avoid

- w



The Job Application Process 5

alcohol and messy foods like ribs. These general guidelines apply to all
company outings, including evening recruiting activities. Moderate
drinking is acceptable during evening outings, but show restraint. Get-
ting drunk isn’t likely to improve your chances of getting an offer.

At the end of the day, you will usually meet with the boss; if he spends
a lot of time trying to sell you on working for the company; it’s a pretty
strong indication that you've done well in your interviews and an offer
will follow.

Dress

Traditionally, people have worn suits to interviews. Most tech companies,
though, are strictly business casual these days. The running joke at some
of these companies is that the only people who wear suits are interview
candidates and salespeople. It’s probably not to your advantage to wear a
suit if nobody else at the company is wearing one. On the other hand, if
you wear jeans and a T-shirt, interviewers may feel you're not showing
sufficient respect or seriousness, even though they may be wearing jeans
themselves. A standard technical interviewing outfit consists of non-
denim cotton pants, a collared shirt, and loafers (no sneakers or sandals).
Unless the job you're interviewing for has a significant business or con-
sulting aspect where formal dress will be required, you generally don’t
need to wear a jacket or a tie.

Recruiters

Your interviews and offer may be coordinated by a company recruiter or
human resources representative. If so, the recruiter will be responsible for
the scheduling and logistical aspects of your interview, including reim-
bursing you for travel or lodging expenses. Recruiters aren’t usually
involved in the hiring decision, but they may pass information about you
on to those who are. They are also usually the ones who will call you back
about your offer and handle negotiations.

As with headhunters, it’s important to understand the position
recruiters are in so you can understand how they behave. Once the deci-
sion is made to give you an offer, the recruiter’s job is to do anything nec-
essary to get you to accept the offer at the lowest possible salary. A -
recruiter’s pay is often tied to how many candidates he signs.

M o




Chapter 1

Recruiters are often very good at what they do. They may focus on a
job’s benefits or perks to draw attention away from negative aspects of a
job offer. Recruiters sometimes try to play career counselor or advisor.
The recruiter asks you about each of your offers and leads you through a
supposedly objective analysis to determine which is the best offer. Not
surprisingly, this exercise always leads to the conclusion that the offer
from the recruiter’s company is clearly the best choice.

A recruiter will generally tell you that you should come to him with
any questions about your offer. This is fine for questions about benefits or
salary but ill-advised when you have questions about the job itself. The
recruiter usually doesn’t know very much about the job you're being
hired to do. When you ask him a specific question about the job, the
recruiter has little incentive to do the work to find the answer, especially
if that answer might cause you to turn down the offer. Instead, the
recruiter is likely to give you a vague response along the lines of what he
thinks you want to hear. When you want straight answers to your ques-
tions, it’s best to go directly to the people you'll be working for. You can
also try going directly to your potential manager if you feel the recruiter
is being unreasonable with you. This is a somewhat risky strategy—it cer-
tainly won’t win you the recruiter’s love—but often the hiring manager
has the authority to overrule decisions or restrictions made by the
recruiter. Hiring managers are often more willing to be flexible than
recruiters. You're just another applicant to the recruiter, but to the hiring
manager, you're the person he chose to work with.

Some recruiters are territorial enough about their candidates that they
won’t give you your prospective team’s contact information. To protect
against this possibility, collect business cards from your interviewers dur-
ing your interviews, particularly from your prospective managers. Then
you'll have the necessary information without having to go through the
recruiter.

The vast majority of recruiters are honorable people deserving of your
respect and courtesy. Nevertheless, don’t let their friendliness fool you
into thinking that their job is to help you; their job is to get you to sign
with their company as quickly as possible for as little money as possible.

Offers and Negotiation

When you get an offer, you’ve made it through the hardest part: You now
have a job, if you want it. However, the game isn’t over yet. You're look-



The Job Application Process

ing for a job because you need to make money; how you play the end
game largely determines how much you get.

When your recruiter or hiring manager makes you an offer, he may also
tell you how much the company is planning to pay you. Perhaps a more
common practice, though, is for the recruiter or hiring manager to tell you
that he would like to hire you and ask you how much you want to make.
Answering this question is covered in detail in Chapter 11, “Non-Technical
Questions.”

Once you've been given a specific offer that includes details about
salary, signing bonus, and stock options, you need to decide whether
you're satisfied with it. This shouldn’t be a snap decision; never accept
an offer on the spot. Always spend at least a day thinking about impor-
tant decisions like this; it’s surprising how much can change in a day.

Recruiters often employ a variety of high-pressure tactics to get you to
accept offers quickly. They may tell you that you must accept the offer
within a few days if you want the job, or they may offer you an exploding
signing bonus, a signing bonus that decreases by a fixed amount each day.
Don’t let this bullying rush your decision. If the company really wants you
(and it probably does if it made you an offer) these limits and terms are
negotiable, even when a recruiter claims they aren’t. You may have to go
over the recruiter’s head and talk to your hiring manager if the recruiter
refuses to be flexible. If these conditions really are non-negotiable, you
probably don’t want to work for a rigid company full of bullies anyway.

If, after careful consideration, your offer meets or exceeds your expecta-
tions, you're all set. On the other hand, if you're not completely happy
with your offer, you should try to negotiate. All too often, applicants
assume that offers are non-negotiable and reject offers without negotia-
tion or accept offers they’re not pleased with. In fact, almost every offer is
negotiable to some extent.

You should never reject an offer for monetary reasons without trying to
negotiate. When you're negotiating an offer that you would otherwise
reject, you hold the ultimate high card. You're ready to walk, so you have
nothing to lose.

Even when an offer is in the range you were expecting, it’s often worth-
while to try negotiating. As long as you are respectful and truthful in
your negotiations and your requests are reasonable,? you’ll never lose an
offer just because you tried to negotiate it. In the worst case, the company

’In determining what is reasonable, the authors frequently apply the maxim “Pigs get fat, but
hogs get slaughtered.”




Chapter 1

refuses to change the offer and you're no worse off than before you tried
to negotiate.

If you decide to negotiate your compensation package, here’s how you
do it. First, figure out exactly what you want. You may want a signing
bonus, better pay, or more stock options. Once you know what you want,
arrange a phone call with the appropriate negotiator; your negotiator is
usually the same person who gave you the terms of your offer. Don’t call
the negotiator blind because you may catch him at an inconvenient time.

Next, say you appreciate receiving the offer and explain why you're not
completely happy with it. For example, you could say, “I'm very pleased to
have received the offer, but I'm having a hard time accepting it because it’s
not competitive with my other offers.” Or you could say, “Thank you again
for the offer, but I'm having trouble accepting it because I know from dis-
cussions with my peers and from talking with other companies that this
offer is below market rates.” If the negotiator asks you to go into greater
detail about which other companies have offered you more money and
how much, or where your peers work, you're under no obligation to do so.
You can easily say, “I keep all my offers confidential, including yours, and
feel that it’s unprofessional to give out that sort of information.”

The company’s negotiator may ask you what you had in mind or, con-
versely, tell you that the offer is non-negotiable. Claiming that the offer is
non-negotiable is often merely a hardball negotiation tactic, so in either
case you should respond by politely and respectfully spelling out exactly
what you expect in an offer. Negotiators rarely change an offer on the
spot, so thank the negotiator for his time and help and say that you're
looking forward to hearing from him again.

Many people find negotiation uncomfortable, especially when dealing
with professional recruiters who do it every day. It’s not uncommon for
someone to accept an offer as close enough just to avoid having to negoti-
ate. If you feel this way about negotiation, try looking at it this way: You
rarely have anything to lose, and even modest success in negotiation can
be very rewarding. If it takes you a 30-minute phone call to get your offer
increased by $3,000, you've made $6,000 per hour. Even lawyers don’t get
paid that much.

Accepting and Rejecting Offers

?t Some point, your negotiations will be complete, and you will be ready
bo aCcept an offer. After you inform a company you're accepting its offer,
» g Sure to keep in touch to coordinate start dates and paperwork.




The Job Application Process

It's also important to be professional about declining your other offers.
Contacts are very important, especially in the computer business where
people change jobs frequently. You’ve no doubt built contacts at all the
companies that made you offers. It’s foolish to squander your contacts at
other companies by failing to inform them of your decision. If you had a
recruiter at the company, you should e-mail him about your decision. You
should also personally call every hiring manager who gave you an offer
to thank him and state your decision. For example, you can say, “I want
to thank you again for extending me the offer. I was very impressed with
your company, but I've decided it’s not the best choice for me right now.
Thank you again, and I appreciate your confidence in me.” Besides sim-
ply being classy, this approach will often get a response such as “I was
pleased to meet you, and I'm sad that you won’t be joining us. If things
don’t work out at that company, give me a call and maybe we can work
something out. Best of luck.”

This gives you a great place to start the next time you need to play the
game.




Approaches to Programmiﬁg
Problems

Coding questions are generally the meat of an interview. They are your
chance to demonstrate that you can do the job. These questions are a large
component of the process that most computer and software companies
use to decide who to hire and who not to hire. Many companies make
offers to less than 10 percent of the people who interview with them. The
questions are generally rather difficult. If everyone (or even most people)
were able to answer a particular question quickly, the company would
stop asking it because it wouldn’t tell anything about the applicants.
Many of the questions are designed to take up to an hour, so don’t get
frustrated if you don’t see the answer right away. Almost no one does.

m These problems are hard! Some of the questions are designed to
see how you handle a problem when you don’t immediately see the solution.

The Process

In these questions, you will usually be working one on one with your
interviewer. He will give you a marker and a whiteboard (or pen and

B—




12

Chapter 2

paper) and ask you to write some code. The interviewer will probably
want you to talk through the question before you start writing. Generally,
you will be asked to code a function, but sometimes you will need to
write a class definition or a series of functions. In any case, you will be
writing code.

If you are applying for a job as a programmer in a specific language,
you should know that language and expect to use it to solve any prob-
lems you are given. If you are applying for a general programming or
development position, a thorough knowledge of C and some familiarity
with C++ will be enough to get by. Your interviewer may permit you to
use other mainstream languages, such as Java or Perl. If you are given a
choice, select the language you know best, but expect that you will be
required to solve some problems in C or C++. Interviewers are less likely
to be amenable to you using less mainstream languages like Lisp, Python,
Tcl, Prolog, Cobol, or Fortran, but if you are particularly expert in one of
these, there’s no harm in asking. Before you go to your interview, you
should make sure you are completely comfortable with the use and
syntax of any language you plan to use. One final note about language
selection: Whether rightly or wrongly, many people consider Visual Basic
and JavaScript to be lesser languages. Unless you are applying for a job
where you will be using these languages it’s probably best to avoid them
in your interviews. The solutions in this book are all in C, C++, Perl, or
Java with an emphasis on C because it’s still the most common language
in interviews.

The code you write in the interview is probably the only example of
your code that your interviewer will see. If you write ugly code, your
interviewer will assume you always write ugly code. This is your chance
to shine and show your best code. Take the time to make your code solid

and pretty.

m Brush up on the languages you expect to use, and write your
best code.

Programming questions are designed to see both how well you can
code and how you solve problems. If all the interviewer wanted to do
was measure your coding ability, he could give you a piece of paper with
problems and come back an hour later to evaluate how you did. How-
ever, the interviewer wants to see your thought process throughout the
interview. The problem-solving process is interactive, and if you're hav-
ing difficulty, the interviewer will generally guide you to the correct



Approaches to Programming Problems

answer via a series of hints. Of course, the less help you need to solve the
problem, the better you look, but showing an intelligent thought process
and responding well to the hints you are given is also very important. If
you know any additional information that pertains to the problem you
may want to mention it to show your general knowledge of computers,
even if it’s not directly applicable to the problem at hand. In answering
these problems, show that you’re not just a propeller-head coder. Demon-
strate that you have a logical thought process, are generally knowledge-
able about computers, and can communicate well.

.m Keep talking! Always explain what you are doing.

Questions are generally asked in ascending order of difficulty. This is
not a hard and fast rule, but you can expect the questions to get more dif-
ficult as you answer more of them correctly. Often, different interviewers
will communicate with each other about what they asked you, what you
could answer, and what you couldn’t answer. If you answer all the ques-
tions in your early interviews but find yourself stumped by harder ques-
tions later on, this may indicate that earlier interviewers were impressed
with your responses.

About the Questions

These questions have very specific requirements. They have to be short
enough that they can be explained and solved reasonably quickly, yet
complex enough that not everyone can solve them. Therefore, it’s unlikely
that you'll be asked any real-world problems. Almost any worthy real-
world problem would take at least three hours to explain, a day to exam-
ine the existing code, and a week to solve. That isn’t an option in an
interview. Instead, many of these problems require using tricks or uncom-
monly used features of a language.

The problems often prohibit you from using the most common way to
do something or from using the ideal data structure. For example, you -
might be given a problem like this: “Write a function that determines if
two integers are equal without using any comparative operators.”! This is
an outright silly and contrived problem. Almost every language that ever
existed has some way to compare two integers. However, you're not off

'If you're wondering how you might do this, try using bit operators.




14

Chapter 2

the hook if you respond, “This is a stupid question; I'd always use the
equality operator. I'd never have this problem.” In fact, you flunked if
you answer this way. Sometimes, it may be worthwhile to comment on a
better way to solve the problem, even if it has been disallowed, but you
need to solve the questions as they’re asked. For example, if you were
asked to solve a certain problem with a hashtable, you might say, “This
would be easy with a binary search tree because it’s much easier to
extract the largest element. But let’s see how I can solve this with a
hashtable . . .”

m Many questions involve ridiculous restrictions, use obscure
features of languages, and seem silly and contrived. Play within the rules.

Solving the Questions

You can’t solve the problem correctly if you don’t understand it. Often,
there are hidden assumptions in the problem, or the interviewer’s expla-
nation may be very brief or difficult to follow. You can’t demonstrate your
skills if you don’t understand the problem. Don’t hesitate to ask your
interviewer questions about the problem, and don’t start solving it until
you understand it.

Once you understand the question, you should almost always try an
example. This example may lead to insights on how to solve the problem
or bring to light any remaining misunderstandings that you have. Start-
ing with an example also demonstrates a methodical, logical thought
process. Examples are especially useful if you don’t see the solution right
away.

m Make sure you understand the problem before you start solving
it, then start with an example to solidify your understanding.

After your example, focus on the algorithm you will use to solve the
problem. Often, this will take a long time and require additional exam-
ples. This is to be expected. If you stand quietly staring at the whiteboard,
the interviewer has no way of knowing whether you’re making produc-
tive headway or simply clueless. Therefore, talk to your interviewer and
tell him what you are doing. For example, you might say something like
“I'm wondering if I can store the values in an array and then sort them,
but I don’t think that this will work because I can’t quickly look up ele-




Approaches to Programming Problems 15

ments in an array by value...” This demonstrates your skill, which is the
point of the interview, and may also lead to hints from the interviewer.
He might respond, “You're very close to the solution. Do you really need
to look up elements by value, or could you . . .”

It may take you a long time to solve the problem. You may be tempted
to begin coding before you figure out exactly how to solve the problem.
Resist this temptation. Consider who you would rather work with: some-
one who thinks about a problem for a long time and then codes it cor-
rectly the first time or someone who hastily jumps into a problem, makes
several errors while coding, and doesn’t have any idea where he is going.
Not a difficult decision, is it?

After you've figured out your algorithm and how you will implement
it, explain your solution to your interviewer. This gives him an opportu-
nity to evaluate your solution before you begin coding. Your interviewer
may say, “Sounds great, go ahead and code it,” or he may say something
like “That’s not quite right because you can’t look up elements in a
hashtable that way . . .” In either case, you gain valuable information.

While you code, it’s important that you explain what you're doing. For
example, you might say, “Here, I'm initializing the array to all 0’s . . .”
This narrative allows the interviewer to follow your code more easily.

m Explain what you are doing to your interviewer before and while
coding the solution. Keep talking!

You generally won't be penalized for asking factual questions that you
might otherwise look up in a reference. You obviously can’t ask a ques-
tion like “How do I solve this problem?” but it is acceptable to ask a ques-
tion like “I can’t remember—what format string do I use to get printf to
print out octal numbers?” While it’s better to know how to do this with-
out asking, it’s OK to ask this sort of question.

After you’ve written the code for a problem, immediately verify that
the code is correct by tracing through it with an example. This step
demonstrates very clearly that your code works in at least one case. It also
illustrates a logical thought process and your desire to check your work
and search for bugs. The example may also help you flush out minor bugs
in your solution.

Finally, you should make sure you check your code for all error and
special cases. Many error and special cases go overlooked in program-
ming; forgetting these cases in an interview indicates you may forget
them in a job. For example, if you allocate dynamic memory, make sure
you check that the allocation did not fail. Also, check that you won't




Chapter 2

dereference any NULL pointers and that you can handle empty data
structures. It’s important to cover these cases to truly impress your inter-
viewer and correctly solve the problem.

m Try an example, and check all error and special cases.

Once you try an example and feel comfortable that your code is correct,
the interviewer may ask you questions about what you wrote. Com-
monly, these questions focus on running time, alternative implementa-
tions, and complexity. If your interviewer does not ask you these
questions, you should volunteer the information to show that you are
cognizant of these issues. For example, you could say, “This implementa-
tion has linear running time, which is the best possible because I have to
check all the input values. The dynamic memory allocation will slow it
down a little, as will the overhead of using recursion...”

When You Get Stuck

Often, you will get stuck on a problem. This is expected and is an impor-
tant part of the interviewing process. Interviewers want to see how you
respond when you don’t recognize the answer to a question immediately.
The worst thing to do is give up or get frustrated. Instead, show interest
in the problem and keep trying to solve it. When all else fails, go back to
an example. Try performing the task and analyzing what you are doing.
Try extending from your specific example to the general case. You may
have to use very detailed examples. This is OK.

m When all else fails, return to a specific example. Try to move from
the specific example to the general case and from there to the solution.

Another fallback option is to try a different data structure. Perhaps a
linked list, array, hashtable, or binary search tree will help solve the prob-
lem. If you're given an unusual data structure, look for similarities
between it and more familiar data structures. Using the right data struc-
ture often makes a problem much easier.

You should also consider the less commonly used or more advanced
aspects of a language when you have trouble with a problem. These can
include bit operators, union types, complex pointer casting, and

advanced keywords. Sometimes, the key to a problem involves one of
these features.




Approaches to Programming Problems 17

m Sometimes a different data structure or advanced language
feature is key to the solution.

Even when you don't feel stuck, you may be having problems. You
may be missing an elegant or obvious way to implement something and
writing too much code. One of the shared traits of almost all interview
coding questions is that the correct solutions are short. You rarely need to
write more than 15 lines of code and almost never more than 30. If you
start writing lots of code, it should be a warning that you may be heading
in the wrong direction.

One final note on writing code: You often need to compare a value to
NULL or 0. In this case (at least in C or C++), you could write either:

if (elem != NULL) {

or:

if (elem) {

These two statements are equivalent to the compiler. There’s something
of an argument between programmers as to which alternative is visually
cleaner. Some programmers argue the former implementation is easier to
read and worth writing out. Other programmers argue that this is such a
common situation that the latter implementation is perfectly acceptable.
From an interviewer’s standpoint, both implementations are technically
correct. In the former definition, however, the interviewer may wonder if
you know that comparing to NULL is unnecessary; in the latter case, the
interviewer wonders nothing and sees you as a coding veteran. Thus, it is
probably preferable to choose the latter implementation in an interview
and mention that it’s the same as comparing to NULL or 0.

Analysis of the Solution

The interviewer will usually ask about the efficiency of your implementa-
tion. Often, you will have to compare trade-offs between your implemen-
tation and another possibility and identify the conditions that make each
choice more favorable. Common questions focus on the use of dynamic
memory and recursion.

The most important part of measuring efficiency is run-time analysis.
The most commonly used form of this is called big-O analysis. This
method provides a concrete means of comparing two algorithms. The
formal definition of big-O analysis is quite mathematical; this explanation

e




18  Chapter 2

deals with it on a more practical and intuitive level. If you're familiar
with big-O analysis, this explanation will serve as a review. Otherwise, it
should bring you up to speed on basic run-time analysis.

Big-O analysis deals specifically with the time an algorithm takes to run
as a function of the size of the input. Let’s start with an example of big-O
analysis in action. Consider a simple function that returns the maximum
value in an array of numbers. The size of the array is n. There are at least
two easy ways to implement the function. First, you can keep track of the
current largest number as the function iterates through the array and
return that value when you are done iterating. This implementation,
called CompareToMax, looks like this:

/* Returns the largest integer in the array */
int CompareToMax (unsigned int arrayl[], int n)

{

unsigned int curMax, i;

/* Make sure that there is at least one element in the array. */
if (n <= 0)
return -1;

/* Set the largest number so far to the first array value. */
curMax = array([0];

/* Compare every number with the largest number so far. */
for (1 = 1; i < n; i++) {
if (array[i] > curMax)
curMax = arrayl[i];

}

return curMax;

}

Alternatively, you could implement this function by comparing each
value to all the other values. If all other values are less than or equal to a
certain value, that value must be the maximum value. This implementa-
tion, called CompareToAll, looks like this:

/* Returns the largest integer in the array */
int CompareToAll (unsigned int array([], int n)
{
int i, j, isMax;
/* Make sure that there is at least one element in the array. */
if (n <= 0)
return -1;

for (i = 0; i < n; i++) {
3

for (3 = 0; J < n; J++) {




I -~ Therefore, the compareToMax function is O(n).

Approaches to Programming Problems

isMax = 1;
/* See if any value is greater. */
if (arrayl(j] > array(i])
isMax = 0; /* array[i] is not the largest value. */

/* If isMax == 1, no larger value exists; array[i] is max. */
if (isMax)
return array(i];

}

Both of these functions correctly return the maximum value. Which one
is more efficient? The most accurate way to compare CompareToMax and
CompareToAll is to benchmark them. In most development efforts,
though, it’s impractical to implement and benchmark every possible
alternative. You need to be able to predict an algorithm’s performance
without having to implement it. Big-O analysis allows you to do exactly
that: compare the predicted relative performance of different algorithms.

In Big-O analysis, input size is assumed to be n. In this case, n simply
represents the number of elements in an array. In other analyses, n may
represent the number of nodes in a linked list, the number of bits in a
data-type, or the number of entries in a hashtable. After figuring out what
n means in terms of the input, you have to determine how many times the
n input items are examined in terms of n. “Examined” is a fuzzy word
because algorithms differ greatly. Commonly, an examination might be
something like adding an input value to a constant, creating a new input
item, or deleting an input value. In big-O analysis, these operations are all
considered equivalent. In both compareToMax and CompareToall, “exam-
ine” means comparing an array value to another value.

In compareToMax, each array element was compared once to a maxi-
mum value. Thus, the n input items are each examined once, resulting in
n examinations. This is considered O(n). O(n) is often called linear time.
You may notice that in addition to examining each element once, there is
a check to make sure that the array is not empty and a step that initializes
the curMax variable. Thus, it may seem more accurate to call this an
O(n + 2) function. Big-O analysis, however, yields the asymptotic running
time, the limit of the running time as n gets very large. As n approaches
infinity, the difference between n and n + 2 is insignificant, so the constant
term can be ignored. Similarly, for an algorithm running in 7 + n2 time,
the difference between n2 and n + n? is negligible for very large n. Thus, in
big-O analysis, you eliminate all but the highest-order term, the term that
is largest as n gets very large. In this case, n is the highest-order term.




20  Chapter 2

The analysis of CompareToAll is a little more difficult. First, you have to
make an assumption about where the largest number occurs in the array.
For now, assume that the maximum element is at the end of the array. In
this case, this function may compare each of n elements to 7 other ele-
ments. Thus, there are n-n examinations, and this is an O(n?) algorithm.

The analysis so far has shown that CompareToMax is O(n) and
CompareToAll is O(n?). This means that as the array grows, the number
of comparisons in CompareToall will become much larger than in
CompareToMax. Consider an array with 30,000 elements. CompareToMax
will compare on the order of 30,000 elements while CompareToall will
compare on the order of 900,000,000 elements. You would expect
CompareToMax to be much faster because it examines 30,000 times fewer
elements. In fact, one benchmark timed CompareToMax at less than .01
seconds while CompareToall took 23.99 seconds.

You may think this comparison was stacked against CompareToAll
because the maximum value was at the end. This is true, and it raises the
important issues of best-case, average-case, and worst-case running times.
The analysis of CompareToAll was a worst-case scenario, where the maxi-
mum value was at the end of the array. Consider the average case, where
the largest value is in the middle. You have to check only half the values n
times because the maximum value is in the middle. This results in check-
ing n(2) = "/2 times. This would appear to be an O("%2) running time.
Consider, though, what the ¥z factor means. The actual time to check each
value is highly dependent on the machine instructions that the code
translates to and then on the speed in which the CPU can execute the
instructions. Therefore, the ¥2 doesn’t mean very much. You could even
come up with an O(n?) algorithm that was faster than an O("/2) algo-
rithm. In big-O analysis, you drop all constant factors, so the average case
for compareToAll is no better than the worst case. It is still O(n?).

The best case running time for CompareToAll is better than O(n?). In
this case, the maximum value is at the beginning of the array. The maxi-
mum value is compared to all other values only once, so the result is an
O(n) running time.

Note that in CompareToMax, the best-case, average-case, and worst-
case running times are identical. Regardless of the arrangement of the val-
ues in the array, the algorithm is always O(n).

The general procedure for big-O run-time analysis is as follows:

1. Figure out what the input is and what 7 represents.

2. Express the number of operations the algorithm performs in terms
of n.

B ;



Approaches to Programming Problems

21

3. Eliminate all but the highest-order terms.

4. Remove all constant factors.

Here’s a common case to be aware of. You could make the following
optimization to CompareToall. Instead of comparing each number to
every other number, compare each number to only the numbers occurring
after it. In essence, every number before the current number has already
been compared to the current number. Thus, the algorithm is still correct
if you compare only to numbers occurring after the current number.
What's the worst-case running time for this implementation? The first
number is compared to n numbers, the second number to n — 1 numbers,
the third number to n - 2, resulting in a number of comparisons equal to #
+(m-1)+(n-2) + (n-3)+ ... + 1. This is a very common result; the sum
of this series is

n: n

JE— + J—
2 2
n’is the highest-order term, so this is still an O(n?) running time.

The fastest possible running time is O(1). This is commonly referred to
as constant running time. This means the function always takes the same
amount of time to execute, regardless of the input size. There may even be
no input to the function.

Most coding problem solutions in this book include a run-time analysis.
You may find these examples helpful in solidifying your understanding.

e e Y £




Linked Lists

Why do we devote an entire chapter to linked lists—arguably the least
useful creature in the dynamic data structure menagerie? We treat them in
depth here because they are the favorite dynamic data structure of inter-
viewers. Remember that most interviewers want to ask at least two or
three questions over the course of an hour-long interview. This means
that they have to ask questions that you can be reasonably expected to
answer in 20 to 30 minutes. Linked lists are simple enough that with a
little practice you can write a relatively complete implementation in less
than 10 minutes on half a sheet of paper, leaving plenty of time to answer
the question. In contrast, it might take you most of the interview period to
implement a more complex data structure like a hashtable. Furthermore,
there is not much room for variation in implementation of linked lists.
This means that an interviewer can simply say “linked list” and not waste
time discussing and clarifying implementation details. On the other hand,
linked lists are complex enough that an interviewer can construct chal-
lenging questions.

Because they are used less often than other dynamic data structures in
real-world programming, you may not be completely conversant with




24

Chapter 3

linked lists. Because it’s difficult for an interviewer to tell the difference
between someone who’s rusty and someone who doesn’t know, we sug-
gest you use the following overview to refamiliarize yourself with linked
lists. If you know linked lists like the back of your hand, you can skip to
the problems and get some practice.

Singly Linked Lists

When an interviewer says “linked list” he generally means a canonical
singly linked list. This list consists of a number of data elements in which
each data element has a next pointer or next reference (the link) to the fol-
lowing element (see Figure 3.1). The link of the last element in the list is
marked to indicate that this element is the end of the list. In C, you mark
the end by setting the next pointer equal to NULL. An element’s next
pointer and data are bound together, usually by either a struct (C) or a
class (C++ and Java). Following is a C element type declaration for a linked
list of integers:
typedef struct elementT {
int data;

struct elementT *next;
} element;

Solutions to linked list questions are generally coded in C, or occasion-
ally C++. C is used because most other languages have more powerful
dynamic data structures, either as fundamental types (Perl) or as part of
the standard libraries (Java). Although you may be unlikely to use a .
linked list in a C program, you're even less likely to use one when better
options are built in to the language.

Whatever language they are implemented in, singly linked lists have a
host of special cases and potential programming traps. Because the links
in a singly linked list consist only of next pointers, the list can be tra-
versed only in the forward direction, so a complete traversal of the list
must begin with the first element. In other words, you need a pointer to
the first element of a list in order to locate all the elements in the list. Con-
sequently, the term linked list is often used as a shorthand to mean a

head
pointer 12 j 3 j -8 j 6
a— — —

Figure 3.1 A singly linked list.




Linked Lists 25

pointer to the first element of a linked list. For instance, if someone says
that a function takes a linked list as an argument, he probably means that
it takes a pointer to the first element of a linked list as an argument.

Modifying the Head Pointer

This concept leads to the first important caveat of linked list implementa-
tion. Because a head pointer (pointer to the first element) is used to track
an entire list, the head pointer must be updated whenever a new first ele-
ment is added to the list or the old first element is removed. Updating the
head pointer becomes a problem when you make the alteration inside a
function (which is the usual case) because you must update the first ele-
ment pointer in the calling function, not just the local copy of it. For
example, the following code is incorrect because it fails to update the
head pointer in the calling function:

int BadInsert (element *head)

{

element *newElem;
newElem = (element *) malloc(sizeof{element));
if (!newElem)

return 0;

newElem->next = head;

/* Incorrectly updates local copy of head.

* Calling code retains the old value for the first element

* pointer, so it now points at the second element of the list.
*/

head = newElem;

return 1;

}

The correct way to update the head pointer in C is to pass a pointer to
the head pointer, allowing you to modify the calling function’s pointer to
the first element, as shown here:

int Insert(element **head)

{

element *newElem;

newElem = (element *) malloc (sizeof (element)) ;
if (!newElem)

return 0;
newElem->next = *head;

/* *head gives the calling function's head pointer, so

I n * the change is not lost when this function returns IIW
T s e s i



26  Chapter 3

*/
+*head = newElem;
return 1;

}

m Any function that can change the first element of a linked list
must be passed a pointer to the head pointer.

Traversing

Often you need to work with list elements other than the head element.
Operations on any but the first element of a linked list require traversal of
some elements of the list. If you don’t check for the end of the list as you
traverse, you risk dereferencing a NULL pointer. For instance, suppose
you were to search for the first 6 in a linked list of integers in the follow-
ing manner:

element *FindSix(element *elem)

{
while (elem->data != 6) {
elem = elem-s>next;

}

/* Found elem->data == 6 */
return elem;

}

This search method works fine, as long as the list actually has a 6 in it.
If it doesn’t, then elem is eventually set to NULL when you try to traverse
past the last element, causing the conditional of the while loop to derefer-
ence a NULL pointer and crash the program. Instead, you could use the
conditional of the while loop to test the traversal pointer, ensuring that
traversal will halt at the end of the list, as follows:

element *FindSix(element *elem)
{
while (elem) {
if (elem->data == 6) {
/* Found elem->data == 6 */
return elem;

}

elem = elem->next;

/* No elem->data == 6 exists */

return NULL;

}

You may need to adapt this general form to meet the needs of a particu-

lar function.
[ o




Linked Lists 27

| LESSON | Always test for the end of a linked list as you traverse it.

Insertion and Deletion

Because links in a singly linked list are maintained exclusively with next
pointers, any insertion or deletion of elements in the middle of a list
requires modification of the previous element’s next pointer. This means
that to insert an element, you need pointers to the elements immediately
before and after the insertion point; to delete an element you need point-
ers to both the element to be deleted and the immediately preceding ele-
ment. In fact, because the preceding element’s next pointer provides a
pointer to the following element, a pointer to the preceding element is
sufficient. However, if you're given a pointer to the latter element (the ele-
ment to delete or the element immediately after the insertion point)
there’s no easy way to find the preceding element. You must traverse the
list. Following is an example of how you might find the element immedi-
ately preceding the one you need to delete:

int DeleteElement (element **head, element *deleteMe)

{

element *elem = *head;

if (deleteMe == *head) { /* special case for head */
*head = elem->next;
free(deleteMe) ;
return 1;

}

while (elem)
if (elem->next == deleteMe) {
/* elem is element preceding deleteMe */
elem->next = deleteMe->next;
free(deleteMe) ;
return 1;

}

elem = elem->next;

}
/* deleteMe not found */
return 0O;

}

m Deletion and insertion require a pointer to the element
immediately preceding the deletion or insertion location.

Performing deletions raises another issue. Suppose you want to free all
the elements ofa lmked list. The natural mchnatlon is to use a smgle




28

Chapter 3

pointer to traverse the list, freeing elements as you go. A problem arises,
however, when this is implemented. Do you advance the pointer or free
the element first? If you advance the pointer first, then the free is impossi-
ble because you overwrote the pointer to the element to be freed. If you
free the element first, advancing the pointer is impossible because it
involves reading the next pointer in the element that was just freed. The
solution is to use two pointers, as in the following example:

void Deletelist (element *head)

{

element *next, *deleteMe;

deleteMe = head;

while (deleteMe) {
next = deleteMe->next;
free (deleteMe) ;
deleteMe = next;

}

m- Deletion of an element always requires at least two pointer
variables.!

Doubly Linked Lists

Doubly linked lists eliminate many difficulties inherent in singly linked
lists (see Figure 3.2). A doubly linked list differs from a singly linked list
in that each element has a previous pointer as well as a next pointer (the
previous pointer of the first element is usually set to NULL). This addi-
tional pointer makes it possible to traverse the list in either direction.
Enabling traversal in both directions allows complete traversal of the list
starting from any element. Insertion and deletion become much easier
because finding the next and previous elements is trivial when next and
previous pointers are available. It’s even possible to delete elements with
a single pointer variable because you can use the previous pointers to
delete elements behind your traversal position. Doubly linked lists are
encountered infrequently in interview questions. Many questions that are
difficult for singly linked lists are trivial when doubly linked lists are
used. On the other hand, if a question is not made easier by using a dou-
bly linked list, there is no point increasing the list’s complexity.

1In fact, ipsertiqn requires two pointer variables as well, but because one of them is used for an
glement in the list and the other for the pointer returned by the memory allocation call, there’s
htﬂe’ d’ anger of forgetting this in the insertion case.



Linked Lists

29

head
—

pointer ]24_’_’3‘-'_’_847'_»6

[ ]
L
[

Figure 3.2 A doubly linked list.

Circular Linked Lists

The final variation on the linked list theme is the circular linked list, which
comes in singly and doubly linked varieties. Circular lists have no ends, so
the primary problem in traversal changes from detecting the end of the list
to avoiding traversing infinitely. Though circular linked lists have some
interesting properties, they rarely appear in interview questions.

More complex topologies of linked elements, generally categorized as
trees, graphs, or networks, are discussed in Chapter 4, “Trees and Graphs.”

Problem: Stack Implementation

m Discuss the stack data structure. Implement a stack in C using
either a linked list or a dynamic array, and justify your decision.
Design the interface to your stack to be complete, consistent, and
easy to use.

This question is aimed at determining three things: your knowledge of
basic abstract (stack) and fundamental (linked list and dynamic array)
data structures, your ability to write routines to manipulate these struc-
tures, and your ability to design consistent interfaces to a group of
routines.

A stack is a last-in-first-out (LIFO) data structure. This means that when
you remove an element you get the last element that was added. Stacks
are useful data structures for tasks completed by performing multiple lev-
els of subtasks. Some examples of stack use are tracking return addresses,
parameters, and local variables for subroutines and tracking tokens when
parsing a grammar in a compiler. The add element and remove element
Operations are conventionally called push and pop, respectively.

Linked lists are discussed in the introduction to this chapter. A dynamic
array is an array that changes size as needed when elements are added.
See the introduction to Chapter 5, “Arrays and Strings,” for a more




30

Chapter 3

complete discussion of dynamic arrays. The principal advantage of
dynamic arrays over linked lists is random access (you can immediately
access any element). Operations on a stack always work on the end of the
data structure (the top of the stack), however, so the random accessibility
of a dynamic array gains little. As a dynamic array grows, it must occa-
sionally be resized. This is a time-consuming operation. On the other
hand, if resizing is planned intelligently, a dynamic array may grow more
efficiently than a linked list because a linked list must dynamically allo-
cate memory for each element. A linked list also has a memory overhead
of one pointer for each element. If you store small pieces of data on the
stack, like single integers, this overhead is significant. For these reasons, a
stack based on a dynamic array will usually have superior performance
to one based on a linked list. In the context of an interview, though, the
primary concern is ease and speed of implementation. Implementing a
linked list is far less complicated than implementing a dynamic array, so a
linked list is probably the best choice for your solution.

Having explained your linked list decision to the interviewer, you can
design the routines and their interfaces. If you take a moment to design
your code before writing it you can avoid mistakes and inconsistencies in
implementation. More importantly, this shows you won’t skip right to
coding on a larger project where good planning is essential to success.

Your stack will need Push and Pop routines. What will the prototype
for these functions be? Each function must be passed the stack it operates
on. push will be passed the data it is to push, and Pop will return a piece
of data from the stack. The simplest way to pass the stack is to passa
pointer to the stack. Because the stack will be implemented as a linked
list, the pointer to the stack will be a pointer to the first element of the
linked list. In addition to the pointer to the stack, you could pass the data
as a second parameter to Push. Pop could take only the pointer to the
stack as an argument and return the value of the data it popped from the
stack. To write the prototypes, you need to know the type of the data that
will be stored on the stack. You should declare a struct for a linked list ele-
ment with the appropriate data type. If the interviewer doesn’t make any
suggestion, storing void pointers is a good general-purpose solution. Void
pointer storage yields a struct and prototypes that look like the following:

typedef struct elementT {
struct elementT *next;
void *data;

} element;

void Push(element *stack, void *data);
void* Pop(element *stack) ;




Linked Lists

31

Let’s consider what will happen in these routines in terms of proper
functionality and error handling.

Push and Pop both change the first element of the list. The calling rou-
tine’s stack pointer must be modified to reflect this change, but any
change you make to the pointer that is passed to these functions won’t be
propagated back to the calling routine. You can solve this problem by
having both routines take a pointer to a pointer to the stack. This way you
can change the calling routine’s pointer so that it continues to point at the
first element of the list. Implementing this change gives the following:

void Push(element **gstack, void *data);
void* Pop(element **stack);

Next you need to consider error handling. Push will have to dynami-
cally allocate memory for a new element. Allocation is an operation that
can fail. Remember to check that allocation succeeded when you write this
routine. You also need some way to indicate to the calling routine whether
the push succeeded or failed. In C it’s generally most convenient to have a
routine indicate success or failure by its return value. This way, the routine
can be called from the conditional of an if statement with error handling
in the body. So, pass Push a pointer to a pointer to the stack and the data to
store, and it will return true for success and false for failure.

Can pop fail? It doesn’t have to allocate memory, but what if it is asked
to pop an empty stack? It ought to indicate that the operation was unsuc-
cessful, but it still has to be able to return data when it is successful. A C
function has a single return value, but Pop really needs to return two val-
ues: the data it popped and an error code.

There are a number of possible solutions to this problem, none of which
are entirely satisfactory. One approach is to use the single return value for
both purposes. If Pop is successful, have it return the data; if it is unsuc-
cessful, return NULL. As long as your data is a pointer type and you
never need to store NULL pointers on the stack, this works fine. If you
have to store NULL pointers, however, there’s no easy way to determine
whether a NULL pointer returned by Pop represents a legitimate element
that you stored or an empty stack. Although restricting the stack to stor-
ing non-NULL pointers might be acceptable in some cases, we will
assume that for this problem it is not.

If you cannot use the return value for both the data and error code, you
must return two distinct values. Besides its return value, how else can a
function return data? As with the stack parameter, if you pass the func-

tion a pointer to a variable, the function can return data by using the
pointer to change the value of the variable.



32

Chapter 3

Using this method of returning two values, there are two possibilities
for the interface to Pop. You can either have Pop take a pointer to an error
code variable as an argument and return data, or you can have it take a
pointer to a data variable and return an error code. Intuitively, most pro-
grammers would expect Pop to return data. However, using Pop is awk-
ward if the error code is not its return value. Instead of simply calling Pop
in the conditional of an if or while statement, you have to explicitly
declare a variable for the error code and check its value in a separate
statement after you call pop. Furthermore, if you choose this option, Push
takes a data argument and returns an error code while Pop takes an error
code argument and returns data. This may offend your sense of symme-
try (it does ours). On the other hand, as we mentioned, most program-
mers intuitively expect Pop to return data. Neither alternative is clearly
correct; there are serious problems with both. In an interview, it wouldn't
matter so much which alternative you chose, as it would that you were
able to identify the pros and cons of each and justify your choice. We
think error code arguments are particularly irksome, so we continue this
discussion assuming you chose to have Pop return an error code. This
gives the following prototypes:

int Push(element **stack, void *data);
int Pop(element **stack, void **data);

You will also want to write CreateStack and DeleteStack functions.
Neither of these is absolutely necessary in a linked list implementation.
You could delete the stack by calling Pop until the stack is empty, and you
could create a stack by passing Push a pointer to NULL as the stack argu-
ment. Writing these functions provides a complete, implementation-inde-
pendent interface to the stack. A stack implemented as a dynamic array
would probably need createstack and Deletestack functions. By
including these functions in your implementation you leave open the pos-
sibility that someone could change the underlying implementation of the
stack without having to change the programs that use the stack.

With the goals of implementation independence and consistency in mind,
it’s a good idea to have these functions return error codes, too. Even though
in a linked list implementation neither createStack nor DeleteStack can
fail, under a different implementation it could be possible for them to fail
(if, for instance, Createstack couldn’t allocate memory for a dynamic
array). If you design the interface with no way for these functions to indi-
cate failure, you severely handicap anyone who might want to change
your implementation. Again, you face the same problem as with Pop.



Linked Lists

CreateStack must return both the empty stack and an error code. You
can’t use a NULL pointer to indicate failure because a NULL pointer is
the empty stack for a linked list implementation. In keeping with our pre-
vious decision, we show an implementation with an error code as the
return value. Because CreateStack won't be able to return the stack as its
value, it will have to take a pointer to a pointer to the stack. Because all
the other functions take a pointer to the stack pointer, it makes sense to
have DeleteStack take its stack parameter in the same way. This way, if
you declare the stack pointer as element *stack; you can always pass
the stack argument as &stack—you don’t have to remember which func-
tions take stack and which take &stack. This reasoning gives you the fol-
lowing prototypes.

int CreateStack(element **stack);
int DeleteStack(element **stack);

Once you have everything designed properly, coding becomes clear.
CreateStack sets the stack pointer to NULL and returns success, as
follows:

int CreateStack(element **stack)

{

*gtack = NULL;
return 1;

}

push allocates the new element, checks for failure, sets the data of the
new element, places it at the top of the stack, and adjusts the stack
pointer, as follows:

int Push{element **stack, void *data)
{
element *elem;
elem = (element *) malloc(sizeof{element));
if (lelem)
return 0;
elem->data = data;
elem->next = *stack;
*stack = elem;
return 1;

}

Pop checks that the stack isn’t empty, fetches the data from the top ele-
ment, adjusts the stack pointer, and frees the element that is no longer on
the stack, as follows:

int Pop(element **stack, void **data)

{



36  Chapter3

Problem: Maintain Linked List Tail Pointer

® head and tail are global pointers to the first and last element,
respectively, of a singly linked list of integers. Implement C func-
tions for the following prototypes:

int Delete(element *elem);
int InsertAfter (element *elem, int data);

The argument to Delete is the element to be deleted. The two
arguments to InsertAfter give the data for the new element and
the element after which the new element is to be inserted. It
should be possible to insert at the beginning of the list by calling
InsertAfter with NULL as the element argument. These func-
tions should return 1 if successful and 0 if unsuccessful.

Your functions must keep the head and tail pointers current.

This problem seems relatively straightforward. Deletion and insertion
are common operations for a linked list, and you should be accustomed to
using a head pointer to locate a linked list. The requirement of maintain-
ing a tail pointer is the only unusual aspect of this problem. This require-
ment doesn’t seem to fundamentally change anything about the list or
the way you operate on it, so it doesn’t look as if you need to design any
new algorithms. Just make sure to update the head and tail pointers when
necessary.

When will you need to update these pointers? Obviously, operations in
the middle of a long list will not affect either the head or tail. You need to
update the pointers only when you change the list such that a different
element appears at the beginning or end. More specifically, when you
insert a new element at either end of the list, that element becomes the new
beginning or end of the list. When you delete an element at the beginning
or end of the list, the next-to-first or next-to-last element becomes the new
first or last element.

For each operation you will have a general case for operations in the
middle of the list and special cases for operations at either end. When you
are dealing with many special cases, it can be easy to miss some of them,
especially if some of the special cases have more specific special cases of
their own. One technique for identifying special cases is to consider what
circumstances are likely to lead to special cases being invoked. Then, you
can check to see whether your proposed implementation works in each of
these circumstances. If you discover a circumstance that creates a prob-
lem, you have discovered a new special case.



Linked Lists 37

We already discussed the circumstances where you are instructed to
operate on the ends of the list. Another problem-prone circumstance is a
NULL pointer argument. The only other thing that can change is the list
on which you are operating—specifically its length. What lengths of lists
might create problematic circumstances? You can expect somewhat dif-
ferent cases for the beginning, middle, and end of the list. Any list that
doesn’t have these three distinct classes of elements could lead to addi-
tional special cases. An empty list has no elements, so it obviously has no
beginning, middle, or end elements. A one-element list has no middle ele-
ments and one element that is both the beginning and end element. A
two-element list has distinct beginning and end elements, but no middle
element. Any list longer than this has all three classes of elements and is
effectively the general case of lists—unlikely to lead to additional special
cases. Based on this reasoning, you should explicitly check that your
implementation works correctly for lists of length 0, 1, and 2.

At this point in the problem, you can begin writing Delete. As we said,
you need a special case for deleting the first element of the list. You can
compare the element to be deleted to head to determine if you need to
invoke this case.

int Delete{element *elem)

{
if (elem == head) {
head = elem->next;
free(elem) ;
return 1;

Now write the general middle case. You'll need an element pointer to
keep track of your position in the list (we'll call the pointer curpos).
Recall that to delete an element from a linked list, you need a pointer to
the preceding element so you can change its next pointer. The easiest way
to find the preceding element is to compare curPos->next to elem, so
curPos points to the preceding element when you find elem. You also
need to construct your loop so as not to miss any elements. If you initial-
ize curPos to head, then curPos- >next starts as the second element of
the list. Starting at the second item is fine because you treat the first ele-
ment as a special case, but make your first check before advancing cur-
Pos or you'll miss the second element. If curPos becomes NULL, you
have reached the end of the list without finding the element you were

supposed to delete, so you should return failure. The middle case yields
the following (added code is bold):

R




38  Chapter 3

int Delete(element *elem)

{

element *curPos = head;

if (elem == head) {
head = elem-»>next;
free(elem) ;
return 1;

}

while (curPos) {
if (curPos->next == elem) {
curPos->next = elem->next;
free(elem) ;
return 1;

}

curPos = curPos->next;

return 0;

Next, consider the last element case. The last element’s next pointer is
NULL. To remove it from the list, you need to make the next-to-last ele-
ment’s next pointer NULL and free the last element. If you examine the
loop constructed for middle elements, you will see that it can delete the
last element as well as middle elements. The only difference is that you
need to update the tail pointer when you delete the last element. If you
set curPos->next to NULL, you know you changed the end of the list
and must update the tail pointer. Adding this to complete the function,
you get the following:

int Delete (element *elem)

{

element *curPos = head;

if (elem == head) {
head = elem->next;
free(elem) ;

}

while (curPos) {

if (curPos->next == elem)
curPos->next = elem->next;
free(elem) ;
if (curPos-»>next == NULL)
tall = curPos;
return 1;

}

_ —




Linked Lists

39

curPos = curPos->next;

}

return 0;

}

This solution covers the three argument-determined special cases we
discussed. Before you present the interviewer with this solution, you
should check behavior for NULL pointer arguments and the three poten-
tially problematic list length circumstances. What happens if elemis
NULL? The while loop traverses the list until curPos->next is NULL
(when curpos is the last element). Then on the next line, evaluating
elem->next dereferences a NULL pointer. Because it’s never possible to
delete NULL from the list, the easiest way to fix this problem is to return 0
if elemis NULL.

If the list has zero elements, then head and tail are both NULL.
Because you'll be checking that elemisn't NULL, elem == head will
always be false. Further, because head is NULL, curPos will be NULL,
and the body of the while loop won't be executed. There doesn’t seem to
be any problem with zero element lists. The function simply returns 0
because nothing can be deleted from an empty list.

Now try a one-element list. In this case, head and tail both point
to the one element, which is the only element you can delete. Again,
elem == headis true. elem->next is NULL, so you correctly set head to
NULL and free the element; however, tail still points to the element you
just freed. As you can see, you need another special case to set tail to
NULL for one-element lists. What about two-element lists? Deleting the
first element causes head to point to the remaining element, as it should.
Similarly, deleting the last element causes tail to be correctly updated.
The lack of middle elements doesn’t seem to be a problem. You can add
the two additional special cases and then move on to InsertAfter:

int Delete(element *elem)

{

element *curPos = head;

if (lelem)
return 0;

if (elem == head) |
head = elem->next;
free (elem) ;
/* special case for 1 element list */
if (lhead)
tail = NULL;



40

Chapter 3

return 1;

while (curPos) ({

if (curPos->next == elem) {
curPos->next = elem->next;
free(elem);
if (curPos->next == NULL)

tail = curPos;
return 1;

}

curPos = curPos-s>next;

return 0;

}

You can apply similar reasoning to writing InsertaAfter. Because you
are allocating a new element in this function, you must take care to check
that the allocation was successful and that you don’t leak any memory.
Many of the special cases encountered in Delete are relevant in
InsertAfter, however, and the code is structurally very similar.

int InsertAfter (element *elem, int data)

{

element *newElem, *curPos = head;

newElem = (element *) malloc(sizeof (element)) ;
if (!newElem)

return 0;
newElem->data = data;

/* Insert at beginning of list */
if (lelem) {

newElem->next = head;

head = newElem;

/* Special case for empty list */
if (!tail)
tail = newElem;

return 1;
while (curPos) {
if (curPos == elem)
newElem->next = curPos-s>next;

curPos->next = newElem;

/* Special case for inserting at end of list */



Linked Lists

41

if (! (newElem->next)}
tail = newElem;
return 1;

}

curPos = curPos->next;

}

/* Insert position not found; free element and return failure */
free (newElem) ;
return 0;

}

This problem turns out to be an exercise in special cases. It’s not partic-
ularly interesting or satisfying to solve, but it's very good practice. Many
interview problems have special cases, so you should expect to encounter
them frequently. In the real world of programming, unhandled special
cases represent bugs that may be difficult to find, reproduce, and fix. A
programmer who identifies special cases as he is coding is likely to be
more productive than one who finds special cases through debugging.
Intelligent interviewers recognize this and pay attention to whether a can-
didate identifies special cases as part of the coding process or needs to be
prompted to recognize special cases.

Problem: Bugs in RemoveHead

= Find and fix the bugs in the following function that is supposed to
remove the head element from a singly linked list:

void RemoveHead (node *head)

{
free (head) ; /* Line 1 */
head = head->next; /* Line 2 */

}

These bug-finding problems occur with some frequency, so it’s worth-
while to discuss a generic strategy that you can apply to this and other
problems.

Because you will generally be given only a small amount of code to
analyze, your bug-finding strategy will be a little different than in real-
world programming. You don’t need to worry about interactions with
other modules or other parts of the program. Instead, you must do a sys-
tematic analysis of every line of the function without the help of a debug-

ger. There are four common problems areas to consider for any function
you are given:



42

Chapter 3

1. Check that the data comes into the function properly. Make sure
you aren’t accessing a variable that you don’t have, you aren’t read-
ing something as an int that should be a 1ong, and you have all the
values you need to perform the task.

2. Check that each line of the function works correctly. The function
is undoubtedly performing a task. Verify that the task is executed
correctly at each line and that the desired result is produced at the
end.

3. Check that the data comes out of the function correctly. The return
value should be what you expect. Also, if the function is expected to
update any caller variables, make sure this occurs.

4. Check the common error conditions. Error conditions vary depend-
ing on the specifics of a problem. They tend to involve unusual argu-
ment values. For instance, functions that operate on data structures
may have trouble with empty or nearly empty data structures; func-
tions that take a pointer as an argument may fail if passed a NULL
pointer.

Starting with the first step, verify that data comes into the function
properly. In a linked list, you can access every node given only the head.
Because you are passed the list head, you have access to all the data you
require—no bugs so far.

Now do a line-by-line analysis of the function. The first line frees
head—OK so far. Line 2 then assigns a new value to head but uses the old
value of head to do this. That’s a problem. You have already freed head,
and you are now dereferencing freed memory. You could try reversing the
lines, but this would cause the element after head to be freed. You need to
free head, but you also need its next value after it has been freed. You can
solve this problem by using a temporary variable to store head's next
value. Then you can free head and use the temporary variable to update
head. These steps make the function look like the following:

void RemoveHead (node *head)

{
node *temp = head-»next; /* Line 1 */
free (head) ; /* Line 2 */
head = temp; /* Line 3 */

}

Now, move to step 3 of the strategy and make sure the function returns
values properly. Though there is no explicit return value, there is an
implicit one. This function is supposed to update the caller’s head value.
In C all function parameters are passed by value, so functions get a local

e




Linked Lists

43

copy of each argument, and any changes made to that local copy are not
reflected outside the function. Any new value you assign to head on line 3
has no effect—another bug. To correct this, you need a way to change the
value of head in the calling code. Variables cannot be passed by reference
in C, so the solution is to pass a pointer to the variable you wish to
change—in this case, a pointer to the head pointer. After the change, the
function should look like this:

void RemoveHead (node **head)

{

node *temp = (*head)-»>next; /* Line 1 */
free (*head) ; /* Line 2 */
*head = temp; /* Line 3 */

}

Now you can move on to the fourth case and check error conditions.
Check a one-element and a zero-element list. In a one-element list, this
function works properly. It removes the one element and sets the head to
NULL, indicating that the head was removed. Now take a look at the
zero-element case. A zero-element list is simply a NULL pointer. If head is
a NULL pointer, you would dereference a NULL pointer on line 1. To cor-
rect this, check whether head is a NULL pointer and make sure not to
dereference it in this case. This check makes the function look like the
following:

void RemoveHead (node **head)

{

node *temp;

if (! (*head)) {
temp = (*head)->next;
free(*head) ;
*head = temp;

}

You have checked that the body of the function works properly, that the
function is called correctly and returns values correctly, and that you have
dealt with the error cases. You can declare your debugging effort com-

plete and present this version of RemoveHead to the interviewer as your
solution.

Problem: Mth-to-Last Element of
a Linked List

= Given a singly linked list, devise a time- and space-efficient algo-
rithm to find the mth-to-last element of the list. Implement your




44

Chapter 3

algorithm, taking care to handle relevant error conditions. Define
mth to last such that when m = 0, the last element of the list is
returned.

Why is this a difficult problem? Finding the mth element from the
beginning of a linked list would be an extremely trivial task. Singly linked
lists are data structures that can be traversed only in the forward direc-
tion. For this problem you are asked to find a given element based on its
position relative to the end of the list. While you traverse the list, how-
ever, you don’t know where the end is, and when you find the end there
is no easy way to back-track the required number of elements.

You may want to tell your interviewer that a singly linked list is a par-
ticularly poor choice for a data structure when you frequently need to
find the mth-to-last element. If you were to encounter such a problem
while implementing a real program, the correct and most efficient solu-
tion would probably be to substitute a more suitable data structure (such
as a doubly linked list) for the singly linked list. Although this comment
shows that you understand good design, the interviewer will still want
you to solve the problem as it was originally phrased.

How then can you get around the problem that there is no way to tra-
verse backward through this data structure? You know that the element
you want is m elements from the end of the list. So, if you traverse m ele-
ments forward from an element and that places you exactly at the end of
the list, you have found the element you were searching for. One
approach is to simply test each element in this manner until you find the
one you’re searching for. Intuitively, this feels like an inefficient solution
because you will be traversing over the same elements many times. If you
analyze this potential solution more closely, you will see that you would
be traversing m elements for most of the elements in the list. If the length
of the list is n, the algorithm would be approximately O(mn). You need to
find a solution more efficient than O(mn). ’

What if you stored some of the elements (or, more likely, pointers to the
elements) as you traversed the list? Then when you hit the end of the list,
you could look back m elements in your storage data structure to find the
appropriate element. If you use an appropriate temporary storage data
structure, this algorithm would be O(n) because it requires only one tra-
versal through the list. Yet this approach is far from perfect. As m becomes
large the temporary data structure would become large as well. In the
worst-case scenario, this approach might require almost as much storage
space as the list itself—not a particularly space-efficient algorithm.




Linked Lists 45

Perhaps working back from the end of the list is not the best approach.
Since counting from the beginning of the list is trivial, is there any way to
count from the beginning to find the desired element? The desired ele-
ment is m from the end of the list, and you know the value of m. It must
also be I elements from the beginning of the list, although you don’t know 1.
However, | + m = n, the length of the list. It’s easy to count all the ele-
ments in the list. Then you can calculate / = n — m, and traverse ! elements
from the beginning of the list. Although this process involves two passes
through the list, it’s still O(n). It requires only a few variables” worth of
storage, so this method is a significant improvement over the previous
attempt. If you could change the functions that modify the list such that
they would increment a count variable for every element added and
decrement it for every element removed, you could eliminate the count
pass, making this a relatively efficient algorithm. Again, though this point
is worth mentioning to the interviewer, he is probably looking for a solu-
tion that doesn’t modify the data structure or place any restrictions on the
methods used to access it. '

Assuming you must explicitly count the elements in the current algo-
rithm, you will have to make almost two complete traversals of the linked
list. A very large list on a memory-constrained system might exist mostly
in paged-out virtual memory (on disk). In such a case, each complete tra-
versal of the list would require a large amount of disk access to swap the
relevant portions of the list in and out of memory. Under these conditions
an algorithm that made only one complete traversal of the list might be
significantly faster than an algorithm that made two traversals, even
though they would both be O(n). Is there a way to find the target element
with a single traversal?

The counting-from-the-beginning algorithm obviously demands that
you know the length of the list. If you can’t track the length so that you
know it ahead of time, you can determine the length only by a full-list tra-
versal. There doesn’t seem to be much hope for getting this algorithm
down to a single traversal. Try reconsidering the previous linear time
algorithm, which required only one traversal but was rejected for requir-
ing too much storage. Is it possible to reduce the storage requirements of
this approach?

When you reach the end of the list, you are really interested in only one
of the m elements you've been tracking—the element that is m elements
behind your current position. You are tracking the rest of the m elements
merely because the element m behind your current position changes
every time your position advances. Keeping a queue m elements long




46

Chapter 3

where you add the current element to the head and remove an element
from the end every time you advance your current position ensures that
the last element in the queue is always m elements behind your current
position.

In effect, you are using this m element data structure to make it easy to
implicitly advance an m-behind pointer in lock step with your current
position pointer. But this data structure is unnecessary—you can explic-
itly advance the m-behind pointer by following each element’s next
pointer just as you do for your current position pointer. This is as easy as
(or perhaps easier than) implicitly advancing by shifting through a queue,
and it eliminates the need to track all the elements between your current
position pointer and your m-behind pointer. This algorithm seems to be
the one you’ve been looking for: linear time, a single traversal, and negli-
gible storage requirements. Now you just need to work out the details.

You’ll use two pointers: a current position pointer and an m-behind
pointer. You will have to ensure that the two pointers are actually spaced
m elements apart; then you can advance them at the same rate. When
your current position is the end of the list, m-behind will point to the mth-
to-last element. How can you get the pointers spaced properly? If you
count elements as you traverse the list, you can move the current position
pointer to the mth element of the list. If you then start the m-behind
pointer at the beginning of the list, they will be spaced m elements apart.
Are there any error conditions you need to watch for? If the list is less
than m elements long, then there is no mth-to-last element. In such a case,
you would run off the end of the list as you tried to advance the current
position pointer to the mth element, possibly dereferencing a NULL
pointer in the process. So, check that you don't hit the end of the list while
doing this initial advance.

With this caveat in mind, you can implement the algorithm. Note that
it’s easy to introduce off-by-one errors in any code that spaces any two
things m items apart or counts m items from a given point. You may want
to refer to the exact definition of “mth to last” given in the problem and
try a little example on paper to make sure you get your counts right, par-
ticularly in the initial advancement of the current pointer.

element *FindMToLastElement (element *head, int m)
element *current, *mBehind;
int i;

/* Advance current m elements from beginning,
* checking for the end of the list
*/



Linked Lists 47

current = head;
for (1 = 0; 1 < m; i++) {
if (current-»>next) ({
current = current->next;
} else {
return NULL;

}
}

/* Start mBehind at beginning and advance pointers
* together until current hits last element
*/
mBehind = head;
while (current-snext) ({
current = current-snext;
mBehind = mBehind-s>next;

}

/* mBehind now points to the element we were
* searching for, so return it
*/

return mBehind;

Problem: List Flattening

= Start with a standard doubly linked list. Now imagine that in
addition to next and previous pointers, each element has a child
pointer, which may or may not point to a separate doubly linked
list. These child lists may have one or more children of their own,
and so on, to produce a multilevel data structure, as shown in Fig-
ure 3.3.

Flatten the list so that all the nodes appear in a single-level, dou-
bly linked list. You are given the head and tail of the first level of
the list. Each node is a C struct with the following definition:

typedef struct nodeT {
struct nodeT *next;
struct nodeT *prev;
struct nodeT *child;
int value;

} node;

This list-flattening question gives you plenty of freedom. You have sim-
ply been asked to flatten the list. There are many ways to accomplish this
task. Each way results in a one-level list with a different node ordering.



48 Chapter 3

head pointer tail pointer

1
4
q
®

Figure 3.3 Multilevel data structure.

Start by considering several choices for algorithms and the node orders
they would yield. Then implement the algorithm that looks easiest and
most efficient.

Begin by looking at the data structure itself. This data structure is a lit-
tle unusual for a list. It has levels and children—somewhat like a tree. A
tree also has levels and children, but in a tree, no nodes on the same level
are connected. You might try to use a common tree traversal algorithm

and copy each node into a new list as you visit it as a simple way to flat-
ten the structure.




Linked Lists

49

The data structure is not exactly a normal tree, so any traversal algo-
rithm you use will have to be modified. From the perspective of a tree,
each separate child list in the data structure forms a single extended tree-
node. This may not seem too bad: Where a standard traversal algorithm
checks the child pointers of each tree-node directly, you just need to do a
linked list traversal to check all the child pointers. Every time you check a
node, you can copy it to a duplicate list. This duplicate list will be your
flattened list. Before you work out the details of this solution, consider its

efficiency.

Every node is examined once, so this is an O(n) solution. There is likely
to be some overhead for the recursion or data structure required for the
traversal. Also, you are making a duplicate copy of each node to create the
new list. This copying is inefficient, especially if the structure is very large.
Therefore, you should search for a more efficient solution that doesn’t

require so much copying.

So far, the proposed solution has concentrated on an algorithm and let
the ordering follow. Instead, try focusing on an ordering and then try to
deduce an algorithm. You can focus on the data structure’s levels as a
source of ordering. It helps to define the parts of a level as child lists. Just as
rooms in a hotel are ordered by level, you can order nodes by the level in
which they occur. Every node is in a level and appears in an ordering
within that level (arranging the child lists from left to right). Therefore,
you have a logical ordering just like hotel rooms. You can order by starting
with all the first-level nodes, followed by all the second-level nodes, fol-
lowed by all the third-level nodes, and so on. Applying these rules to the
example data structure, you should get the ordering shown in Figure 3.4.

Now try to discover an algorithm that yields this ordering. One prop-
erty of this ordering is that you never rearrange the order of the nodes in
their respective levels. So, you could connect all the nodes on each level
into a list and then join all the connected levels. But to find all the nodes
on a given level so that you can join them, you would have to do a
breadth-first search of that level. Breadth-first searching is inefficient, so
you should continue to look for a better solution.

head
pointer

]

tail
pointer

-
1]
i , Figure 3.4 Ordering of nodes.




Chapter 3

In Figure 3.3, the second level is composed of two child lists. Each child
list starts with a different child of a first-level node. You could try to
append the child lists one at a time to the end of the first level instead of
combining the child lists.

To append the child lists one at a time, traverse the first level from the
start, following the next pointers. Every time you encounter a node with a
child, append the child (and thus the child list) to the end of the first level
and update the tail pointer. Eventually, you will append the entire second
level to the end of the first level. You can continue traversing the first
level and arrive at the start of the old second level. If you continue this
process of appending children to the end of the first level, you will even-
tually append every child list to the end and have a flattened list in the
required order. More formally, this algorithm is as follows:

Start at the beginning of the first level
While you are not at the end of the first level
If the current node has a child
Append the child to the end of the first level
Update the tail pointer

Advance to next node

This algorithm is easy to implement because it’s so simple. In terms of
efficiency, every node after the first level is examined twice. Each node is
examined once when you update the tail pointer for each child list and
once when you examine the node to see if it has a child. The nodes in the
first level get examined only once when you examine them for children
because you had a first-level tail pointer when you began. So, there are no
more than 2n comparisons in this algorithm, and it is an O(n) solution.
This is the best time order you can achieve because every node must be
examined.?

The code for this algorithm is as follows:

void FlattenList {node *head, node **tail)3
{
node *curNode = head;
while (curNode) {
/* The current node has a child */

?There are other, equally efficient solutions to this problem. One such solution involves insert-
ing child lists after their parents rather than at the end of the list.

3You need a pointer to the tail pointer so that changes to the tail pointer are retained when the
function returns.



Linked Lists 51

if (curNode->child) ({
Append (curNode->child, tail);

}

curNode = curNode-s>next;

}

/* Appends the child list to the end of the tail and updates
* the tail.
*/

void Append (node *child, node **tail)

{

node *curNode;

/* Append the child child list to the end */
(*tail)->next = child;
child->prev = *tail;

/*Find the new tail, which is the end of the child child
*list.
*/
for (curNode = child; curNode-s>next;
curNode = curNode-snext)
; /* Body intentionally empty */

/* Update the tail pointer now that curNode is the new
* tail.

*/

*tail = curNode;

}

= Unflatten the list. Restore the data structure to its original condi-
tion before it was passed to FlattenList.

You already know a lot about this data structure. One important insight
is that you can create the flattened list by combining all of the child lists
into one long level. Now, to get back the original list, you must separate
the long flattened list back into its original child lists. First, try doing the
exact opposite of what you did to create the list. When flattening the list,
you traversed down the list from the start and added child lists to the
end. To reverse this, you go backward from the tail and break off parts of
the first level. You could break off a part when you encounter a node that
was the beginning of a child list in the unflattened list. Unfortunately, this
is more difficult than it might seem because you can’t easily determine
whether a particular node is a child (indicating that it started a child list)
in the original data structure. The only way to determine whether a node
is a child is to scan through the child pointers of all the previous nodes.




Chapter 3

All this scanning would be inefficient, so you should examine some addi-
tional possibilities to find an efficient solution.

One way to get around the child node problem is to go through the list
from start to end, storing pointers to all the child nodes in a separate data
structure. Then you could go backward through the list and separate
every child node. Looking up nodes in this way frees you from repeated
scans to determine whether a node is a child or not. This is a good solu-
tion, but it still requires an extra data structure. Now try looking for a
solution without an extra data structure.

It seems you have exhausted all the possibilities for going backward
through the list, so try an algorithm that traverses the list from the start to
the end. You still can’t immediately determine whether a node is a child.
One advantage of going forward, however, is that you can find all the
child nodes in the same order that you appended them to the first level.
You would also know that every child began a child list in the original
list. If you separate each child node from the node before it, you get the
unflattened list back.

You can’t simply traverse the list from the start, find each node with a
child, and separate the child from its previous node. You would get to the
end of the list at the break between the first and second level, leaving the
rest of the data structure untraversed. This solution is not too bad,
though. You can traverse every child list, starting with the first level
(which is a child list itself). When you find a child, continue traversing the
original child list and also traverse the newly found child list. You can’t
traverse both at the same time, however. You can save one of these loca-
tions in a data structure and traverse it later. But, rather than designing
and implementing a data structure, you can use recursion. Specifically,
every time you find a node with a child, separate the child from its previ-
ous node, start traversing the new child list, and then continue traversing
the original child list.

This is an efficient algorithm because each node gets checked at most
twice, resulting in an O(n) running time. Again, an O(#) running time is
the best you can do because you must check each node at least once to see
if it is a child. In the average case, the number of function calls is small in
relation to the number of nodes, so the recursive overhead is not too bad.
In the worst case, the number of function calls is no more than the num-
ber of nodes. This solution is approximately as efficient as the earlier pro-
posal that required an extra data structure, but somewhat simpler and
easier to code. Therefore, this recursive solution would probably be the
best choice in an interview. In outline form, the algorithm looks like the
following;:




Linked Lists

Explore path:
While not at the end
If current node has a child
Separate the child from its previous node
Explore path beginning with the child

Go onto the next node

The code for this algorithm is as follows:

/*This is a wrapper function that also updates the tail pointer.*/
void Unflatten({node *start, node **tail)

node *curNode;

ExploreAndSeparate (start) ;

/* Update the tail pointer */
for {(curNode = start; curNode->next;
curNode = curNode-s>next)
; /* Body intentionally empty */
*tail = curNode;

/* This is the function that actually does the recursion and
* the separation
*/

void ExploreAndSeparate(node *childListStart)

{

node *curNode = childListStart;

while (curNode) {
if (curNode->child) {
/* terminates the child list before the child */
curNode->child-»>prev->next = NULL;
/* starts the child list beginning with the child */
curNode->child->prev = NULL;
ExploreAndSeparate (curNode->child) ;

}

curNode = curNode->next;

Problem: Null or Cycle

™ You are given a linked list that is either NULL-terminated
(acyclic), as shown in Figure 3.5, or ends in a cycle (cyclic), as
shown in Figure 3.6.



54  Chapter 3

head pointer
— 3 J 2 J’ 4 j 6 j 2
*~— *~— *— —

Figure 3.5 An acyclic list.

head pointer i
—_— 3 j 2 J’ 4 j 6 _I-' 2
o — *— *~— .-

Figure 3.6 A cyclic list.

Write a function that takes a pointer to the head of a list and deter-
mines if the list is cyclic or acyclic. Your function should return 0
if the list is acyclic and 1 if it is cyclic. You may not modify the list
in any way.

Start by looking at the pictures to see if you can determine an intuitive
way to differentiate a cyclic list and an acyclic list.

The difference between the two lists appears at their ends. In the cyclic
list, there is an end node that points back to one of the earlier nodes. In
the acyclic list, there is an end node that is NULL terminated. Thus, if you
can find this end node, you can test whether the list is cyclic or acyclic. In
the acyclic list, it is easy to find this end node. You traverse the list until
you reach a NULL terminated node. In the cyclic list, though, it is more
difficult. If you just traverse the list, you go in a circle and won’t know if
you're in a cyclic list or just a long acyclic list. You need a more sophisti-
cated approach.

Try looking at the end node a bit more. The end node points to a node
that has another node pointing at it. This means that there are two point-
ers pointing at the same node. This node is the only node with two ele-
ments pointing at it. You can design an algorithm around this property.
You can traverse the list and check every node to see if there are two other
nodes pointing at it. If you find such a node, the list must be cyclic. Other-

wise, the list is acyclic, and you will eventually encounter a NULL
pointer.



Linked Lists

Unfortunately, it is difficult to check the number of nodes pointing at
each element. See if you can find another special property of the end node
in a cyclic list. When you traverse the list, the end node’s next node is a
node that you have previously encountered. Instead of checking for a
node with two pointers pointing at it, you can check whether you have
already encountered a node. If you find a previously encountered node,
you have a cyclic list. If you encounter a NULL pointer, you have an
acyclic list. This is only part of the algorithm. You still have to figure
out how to determine whether or not you have previously encountered
anode.

The easiest way to do this would be to mark each element as you visit
it, but you’ve been told you're not allowed to modify the list. You could
keep track of the nodes you've encountered by putting them in a sepa-
rate, already-encountered list. Then you would compare the current node
to all of the nodes in the already-encountered list. If the current node ever
points to a node in the already-encountered list, you have a cycle. Other-
wise, you'll get to the end of the list and see that it's NULL terminated
and thus acyclic. This would work, but in the worst case the already-
encountered list would require as much memory as the original list itself.
See if you can reduce this memory requirement.

What are you storing in the already-encountered list? The already-
encountered list’s first node points to the original list’s first node, its sec-
ond node points to the original list’s second node, its third node points to
the original list’s third node . . . You're creating a list that mirrors the orig-
inal list. This is unnecessary—you can just use the original list.

Try this approach. Because you know your current node in the list and
the start of the list, you can compare your current node’s next pointer to
all of its previous nodes directly. For the ith node, compare its next
pointer to nodes 1 to i — 1. If any are equal, you have a cycle.

What's the time order of this algorithm? For the first node, 0 previous
nodes are examined; for the second node, one previous node is examined;
for the third node, two previous nodes are examined... Thus, the algo-
rithm examines 0 + 1 + 2 + 3 +...+ n nodes. As discussed in Chapter 2,
”Approaches to Programming Problems,” such an algorithm is O(n?).

That’s about as far as you can go with this approach. Although it’s diffi-
cult to discover without some sort of hint, there is a better solution
involving two pointers. What can you do with two pointers that you
couldn’t do with one? You can advance them on top of each other, but
then you might as well have one pointer. You could advance them with a
fixed interval between them, but this doesn’t seem to gain anything. What
happens if you advance the pointers at different speeds?




56 Chapter3

In the acyclic list, the faster pointer will reach the end. In the cyclic list
they will both loop endlessly. The faster pointer will eventually catch up
with and pass the slower pointer. If the fast pointer ever passes the slower
pointer, you have a cyclic list. If it encounters a NULL pointer, you have
an acyclic list. In outline form, this algorithm looks like this:

Start two pointers at the head of the list
Loop infinitely
If the fast pointer reaches a NULL pointer
Return that the list is NULL terminated
If the fast pointer moves onto or over the slow pointer
Return that there is a cycle
Advance the slow pointer one node

Advance the fast pointer two nodes

You can now implement this solution.

/* Takes a pointer to the head of a linked list and determines if
* the list ends in a cycle or is NULL terminated
*/
int DetermineTermination (node *head)
{
node *fast, *slow;
fast = slow = head;

while (1) {
4

if (tfast || !fast->next)
return 0;

else if (fast == slow || fast-»>next == slow)
return 1;

else {

slow = slow->next;
fast = fast->next-snext;

}

Is this algorithm faster than the earlier solution? If this list is acyclic, the
faster pointer comes to the end after examining n nodes while the slower
pointer traverses Y2 n nodes. Thus, you examine ¥2 n nodes, which is an
O(n) algorithm.

This statement uses the short circuit property of the | | operator.



Linked Lists

57

What about a cyclic list? The slower pointer will never go around any
loop more than once. When the slower pointer has examined 7 nodes, the
faster pointer will have examined 21 nodes and have “passed” the slower
pointer, regardless of the loop’s size. Therefore, in the worst case you
examine 3n nodes, which is still O(n). Regardless of whether the list is
cyclic or acyclic, this two-pointer approach is much better than the one-
pointer approach to the problem.




Trees and graphs are common data structures in programming, and so
they are both fair game in a programming interview. Trees, in particular,
come up frequently because they allow an interviewer to easily test your
knowledge of recursion and run-time analysis. Trees are also simple
enough that you can implement them within the time constraints of an
interview. Although graph problems are interesting, they are usually very
complicated and do not lend themselves to interview questions. Thus, we
will put most of our emphasis on trees.

Trees

A tree is made up of nodes (data elements) with zero, one, or several child
pointers or references to other elements. Each node has only one other
node pointing to or referencing it.

The result is a data structure that looks like Figure 4.1.

As in a linked list, a node’s pointers and data are bound together by a
struct (C), class (C++ and Java), or similar construct in another lan-
guage. Following is a sample C node type declaration for a tree of integers:




60 Chapter 4

A
B C
D E F G
H 1 J
v
K

Figure 4.1 Tree of nodes.

typedef struct nodeT {
/* struct nodeT** because it points to an array of struct nodeT* */
struct nodeT **children;
int value;

} node;

In this definition, children points to an array that keeps track of all the
nodes that this node points to.

Solutions to tree problems can be implemented in any language that
includes pointers or references. C is still the most common interview lan-
guage, so our examples will be in C.

Looking at the tree shown in Figure 4.1, you will see that there is only
one top-level node. From this node, it is possible to follow pointers and
reach every other node. This top-level node is called the root. The root is
the only node from which you are guaranteed to have a path to every
other node. The root node is inherently the start of any tree. Therefore,
people will often say tree when talking about the root node of the tree.

Following is some additional tree-related vocabulary:

Parent. A node that points to other nodes is the parent of those nodes.
Every node except the root has one parent. In Figure 4.1, Bis the par-
entof D, E,and F.

Child. A node is the child of any node that points to it. So in Figure 4.1,
D, E, and F are child nodes of B.

l".'ll“‘ ) — » “,",“‘




Trees and Graphs

Descendant. All the nodes that can be reached by following a path of
child nodes from a particular node are the descendants of that node. In
Figure 4.1, D, E, FE H, I, ], and K are the descendants of B.

Ancestor. An ancestor of a node is any other node that can reach it by
following a series of children. For example, A, B, and D are the ances-
tors of I.

Leaves. The leaves are the nodes that do not have any children. G, H, I,
and K are leaves.

Binary Trees

So far, we have been using the most general definition of a tree. In prac-
tice, when an interviewer says “tree,” he usually means a special type of
tree called a binary tree. In a binary tree, each node has no more than two
children. Often, the two children are called right and left. Figure 4.2 shows
an example of a binary tree.
Adapting the previous node definition for a binary tree yields the fol-
lowing:
typedef struct nodeT {
struct nodeT *left;
struct nodeT *right;
int value;
} node;
When an element has no left or right child, the corresponding pointer is
set to NULL.

F G H

Figure 42 A binary tree.




62 Chapter 4

Problems involving only binary trees can often be solved more quickly
than equivalent problems about generic trees, but they are no less chal-
lenging. Because time is at a premium in an interview, most tree questions
will be binary tree questions. If an interviewer just says “tree,” it's a good
idea to clarify whether he is referring to a generic tree or a binary tree.

-]m People often say “tree” when they mean “binary tree.”

Binary Search Trees

Trees are often used to store sorted or ordered data. By far, the most com-
mon way to store data in a tree is using a special tree called a binary search
tree (BST). In a BST, the value of each node’s left child is less than or equal
to its value, and the value of each node’s right child is greater than or
equal to its value. Figure 4.3 is an example of a BST.

BSTs are so common, in fact, that many people mean a BST when they
say “tree.”

m People often say “tree” when they mean “binary search tree.”

Lookup

One advantage of a binary search tree is that the lookup operation (locat-
ing a particular node in the tree) is fast and simple. This is particularly
useful for data storage. In outline form, the algorithm to perform a
lookup in a BST is as follows:

Start at the root node

Loop while current node isn’t NULL

If the current node’s value is equal to your value

3 10

Figure 4.3 A binary search tree.




Trees and Graphs 63

Return the current node
If the current node’s value is less than your value
Make the left node your current node
If the current node’s value is greater than your value
Make the right node your current node
End loop

If you fall out of the loop, the node wasn’t in the tree.

For example, to look up the value 6, do the following;:

node *FindSixNode (node *root)

{

node *curNode = root;
while (curNode) (
/* You've found the curNode */
if (curNode->value == 6) return curNode;
else if (curNode->value < 6) curNode = curNode->right;
else if (curNode->value > 6) curNode = curNode->left;

}

return NULL; /*No appropriate node exists */

}

This lookup is a fast operation because you eliminate half the nodes
from your search on each iteration by choosing either the left child or the
right child. In the worst case, you will know whether the lookup was suc-
cessful by the time there is only one node left to search. So, the running
time of the lookup is equal to the number of times that you can halve n
nodes before you get to 1. This number, x, is the same as the number of
times you can double 1 before reaching 7, and it can be expressed as 2* = n.
You can find x using a logarithm. For example, log, 8 = 3 because 23 =8,
and so the running time of the lookup operation is O(log(n)). It is com-
mon to leave off the base 2! and call this O(log(n)). log(n) is very fast.
Consider that log,1,000,000,000 = 30.

.m Lookup is an O(log(n)) operation in a binary search tree.

There is one caveat to saying that lookup is O(log(n)) in a BST. Lookup
is only O(log(n)) if you can guarantee that the number of nodes remaining
to be searched will be halved or nearly halved on each iteration. In the
worst case, each node has only one child. In such a case, you have a

'Logarithms with different bases differ by a constant factor, so the base is ignored in big-O
notation.




64

Chapter 4

linked list because each node points to only one other node. Lookup then
becomes an O(n) operation just as in a linked list. The good news is that
there are ways to guarantee that every node has approximately the same
number of nodes on its left side as its right.2 A tree with approximately
the same number of nodes on each side is called a balanced tree.

Without going into too much detail (as the special cases get very nasty),
it is also possible to delete and insert into a balanced BST in O(log(r))
time.

m- Deletion and insertion are O(log(n)) operations in binary
search trees.

Binary search trees have other important properties. For example, it is
possible to obtain the smallest element by following all the left child
pointers and to obtain the largest element by following all of the right
child pointers. The nodes can be printed out in order in O(n) time. It is
even possible, given a node, to find the next highest node in O(log(n))
time.

Tree problems are often designed to test your ability to think recur-
sively. Each node in a tree is the root of a subtree beginning at that node.
This subtree property is conducive to recursion because recursion gener-
ally involves solving a problem in terms of similar subproblems and a
base case. In tree recursion you start with a root, perform an action, and
then move to the left or right subtree (or both, one after the other). This
process continues until you reach a NULL pointer, which is the end of a
tree (and a good base case). For example, the lookup operation can be
implemented recursively as follows:

node *FindSixNode (node *root)

{
if (!root) return NULL;
else if (root-»>value == 6) return root;
else if (root->value < 6) return LookupSix(root->right);
else if (root->value > 6) return LookupSix(root->left);

}

Most problems with trees have this recursive form. A good way to
start thinking about any problem involving a tree is to start thinking
recursively.

m Many tree operations can be implemented recursively.

*The most common of these methods is called a red-black tree.




Trees and Graphs 65

Heaps

Another common tree is a heap. All heaps are binary trees.> Heaps have
the property that each node’s value is less than its parent node’s value, so
the root node has the greatest value. The biggest advantage of a heap is
that it is possible to find the maximum value in constant time by simply
returning the root value. Insertion and deletion are still O(log(n)), but
lookup becomes O(n). It is not possible to find the next-higher node to a
given node in O(log(rn)) time or to print out the nodes in sorted order in
O(n) time as in a BST.

You could model the patients waiting in a hospital emergency room
with a heap. As each patient enters, he is assigned a priority and put into
the heap. A heart attack patient would get a higher priority than a patient
with a stubbed toe. When a doctor becomes available, the doctor would
want to examine the patient with the highest priority. The doctor can
determine the patient with the highest priority by extracting the max
value from the heap, which is a constant time operation.

m If extracting the max value needs to be fast, use a heap.

Common Searches

It’s nice when you have a tree with ordering properties such as a BST or a
heap. Often you're given a tree that isn’t a BST or a heap. For example,
you may have a tree that is a representation of a family tree or a company
job hierarchy. You have to use different techniques to retrieve data from
this kind of tree. One common class of problems involves searching for a
particular node. There are two very common search algorithms for
accomplishing this task.

Breadth-First Search

One way to search a tree is to do a breadth-first search (BFS). In a BFS you
start with the root, move left to right across the second level, then move
left to right across the third level, and so forth. You continue the search
until you have examined all of the nodes or you find the node you are
searching for. The time to find a node is O(n), so this type of search is best
avoided for large trees. A BFS also uses a large amount of memory

®The data implementation of a heap can be different from the structures we discussed

i previously.




Chapter 4

because it is necessary to store pointers to a level’s child nodes while
searching that level.

Depth-First Search

Another common way to search for a node is by using a depth-first search
(DFS). A depth-first search follows one branch of the tree down as many
levels as possible until the target node is found or the end is reached.
When the search can’t go down any farther, it is continued at the nearest
ancestor with unexplored children. DFS has much lower memory require-
ments than BFS because it is not necessary to store all of the child pointers
at each level. Also, DFS has the advantage that it doesn’t examine any sin-
gle level last (BFS examines the lowest level last). This is useful if you sus-
pect that the node you are searching for will be in the lower levels. For
example, if you were searching a job hierarchy tree looking for an
employee who started less than three months ago, you would suspect
that lower-level employees are more likely to have started recently. In this
case, if the assumption were true, a DFS would usually find the target
node more quickly than a BFS. There are other types of searches, but these
are the two most common that you will encounter in an interview.

Traversals

One other common class of tree problems in an unordered tree is called a
traversal. As opposed to searching for a particular node and stopping
when you find it as in a search, a traversal visits every node and performs
some operation on it. Again, there are many common types of traversals,
each of which visits nodes in a different order. The three most common
types of traversals are preorder, in-order, and postorder. Though you should
be familiar with the term traversal and you may be asked to implement
one, you won't be expected to memorize details about the various types,
and any interviewer would happily define them for you. If you are asked
to implement a traversal, you should strongly consider using recursion.

m If you're asked to implement a traversal, recursion is a good way
to start thinking about the problem.

Graphs

Graphs are more complicated than trees. They consist of nodes that have
Zero, one, or several pointers to other nodes. Unlike in a tree, many ele-




Trees and Graphs 67

B
771 E Ko / 2
AP~ B cl~Hbp A—3—c D
4 Ae 3 4 1 A /
F E
Figure 4.4 A directed graph. Figure 4.5 An undirected graph,

ments may point to the same node, possibly creating a loop. Also, the
links themselves may have values or weights. These links are called edges
because they may have more information than just a pointer. In a graph,
edges can be one-way or two-way. A graph with one-way edges is called
a directed graph. A graph with only two-way pointers is called an undi-
rected graph. A directed graph is shown in Figure 4.4, and an undirected
graph is shown in Figure 4.5.

Graphs are commonly used to model real-world problems that are diffi-
cult to model with other data structures. For example, a directed graph
could represent aqueducts connecting cities. You might use such a graph
to help you find the fastest way to get water from city A to city D. An
undirected graph could also represent something complicated, like a
series of relays in signal transmission.

Unlike trees, there are many ways to represent graph data structures in
code. The choice of representation is often determined by the algorithm
being implemented. Graphs are often used in real-world programming,
but graph problems are difficult to solve in the time allotted for an inter-
view. As such, they are very uncommon in interviews; the preceding
overview of graph definitions should be sufficient.

Problem: Preorder Traversal

= Informally, a preorder traversal involves walking around the tree
in a counter-clockwise manner starting at the root, sticking close
to the edges, and printing out the nodes as you encounter them.
For the tree shown in Figure 4.6, the result is 100, 50, 25, 75, 150,
125, 110, 175. Perform a preorder traversal of a binary search tree,
printing the value of each node. Use the following function

prototype:

i void PreorderTraversal (node *root);




Chapter 4

100

N\

50 150

VANRNVAN

25 75 125| | 175

110

Figure 4.6 A binary search tree.

To discover an algorithm for printing out the nodes in the correct order,
you should examine what happens as you print out the nodes. You go to
the left as far as possible, come up the tree, go one node to the right, and
then go to the left as far as possible, come up the tree again, and so on.
You can think of this process in terms of subtrees.

The two largest subtrees are rooted at 50 and 150. You should note one
very important thing about the nodes in these two subtrees. All of the
nodes in the subtree rooted at 50 are printed out before any of the nodes
in the subtree rooted at 150. Also, the root nodes are printed out before
the rest of the respective subtree. Generally, for any node in a preorder
traversal, you would print the node itself, then the left subtree, then the
right subtree. If you begin the printing process at the root node, you
would have a recursive definition as follows:

Print out the root (or subtree’s root) value.

Do a preorder traversal on the left subtree.

Do a preorder traversal on the right subtree.

If you translate the steps to C code you get the following:

void PreorderTraversal (node *root)

{

if (root)

printf ("$d\n", root->value);
else

return;




Trees and Graphs 69

PreorderTraversal (root->left) ;
PreorderTraversal (root->right) ;

}

What'’s the running time on this algorithm? Every node gets examined
once, so it’s O(n).

Problem: Preorder Traversal,
No Recursion

= Perform a preorder traversal of a binary search tree, printing the
value of each node. This time you may not use recursion. Use the
same function prototype:

void PreorderTraversal (node *root);

Without recursion, how do you solve the problem? Sometimes, recur-
sive algorithms can be replaced with iterative algorithms that operate in a
fundamentally different manner using different data structures, but can
accomplish the same task. Consider the data structures you know and
think about how they could be helpful. For instance, you might try using
a list, an array, or another binary tree. Unfortunately, because recursion is
so intrinsic to the definition of a preorder traversal, you may have trouble
finding an entirely different iterative algorithm to use in place of the
recursive algorithm. In such a case, the best course of action is to under-
stand what is happening in recursion and try to emulate the process itera-
tively. Recursion implicitly uses a stack data structure by placing data on
the call stack. That means there should be an equivalent solution that
avoids recursion by explicitly using a stack. Assume you have a stack that
can store node pointers (writing a stack is a separate problem). It has the
following functions:*

int Push(element **stack, void *data);

int Pop(element **stack, void **data);

int CreateStack (element **stack) ;
int DeleteStack(element **stack);

Reexamine your recursive solution to plot exactly what is occurring. If
you understand exactly how the recursive implementation implicitly
stored data on the stack, you can write an iterative implementation that
explicitly stores data on a stack in the same fashion.

The recursive algorithm, again, is as follows:

“If you're not sure what each of these functions does, look at “Stack Implementation” in
Chapter 3.




70

Chapter 4

Print out the root (or subtree’s root) value.
Do a preorder traversal on the left subtree.

Do a preorder traversal on the right subtree.

When you first enter the procedure, you print the root node’s value.
Next you recursively call the procedure to traverse the left subtree. When
you make this recursive call, the calling procedure’s state is saved on the
stack so that when the recursive call returns, the calling procedure can
pick up where it left off. In this algorithm, the calling procedure picks up
where it left off by doing a traversal of the right subtree. Effectively, the
recursive call serves to implicitly store the address of the right tree on the
stack so it can be traversed after the traversal of the left tree is complete.
Each time you print a node and move to its left child, you store the right
child on an implicit stack. Whenever there is no child, you return from a
recursive call, effectively popping a right child node off the implicit stack
so you can continue traversing. In summary, this algorithm prints the
value of the current node, pushes the right child onto an implicit stack,
and moves onto the left child. The algorithm pops the stack to obtain a
new current node when there are no more children (when it reaches a
leaf). This continues until you have traversed the entire tree and the
implicit stack is empty.

You could try to implement this algorithm directly, but first you should
try to remove any unnecessary special cases that would make the algo-
rithm more difficult to implement. Instead of coding separate cases for
the left and right children, you should be able to push pointers to both
nodes onto the stack. Find an order that allows you to push both nodes
onto the stack so that the left node is always popped first.

Because a stack is a last-in-first-out data structure, you can push the
right node onto the stack and then the left node. Then, rather than exam-
ining the left child explicitly, simply pop the first node from the stack,
print its value, and push both of its children onto the stack in the order
described. If you start the procedure by pushing the root node onto the
stack and then pop, print, and push as described, you should be able to
exactly emulate the recursive preorder traversal. To summarize:

Create the stack

Push the root node on the stack

While the stack is not empty
Pop a node

If the node is not NULL




Trees and Graphs

71

Print its value
Push the node’s right child on the stack
Push the node’s left child on the stack

The code for this algorithm is (ignoring error conditions like the stack
being unable to allocate memory):

void PreorderTraversal (node *root)

{

element *theStack;
void *data;
node *curNode;

CreateStack (&theStack) ;
Push (&theStack, root);

while (Pop(&theStack, &data)) {
curNode = (node *) data;
if (curNode) {
printf ("%d\n", curNode-»>value);
Push (&theStack, curNode-»>right) ;
Push (&theStack, curNode->left);

}
}

DeleteStack (&theStack) ;

}

What is the running time for this algorithm? Each node is examined
only once and pushed on the stack only once. Therefore, this is an O(#n)
algorithm. You don’t have the overhead of many function calls in this
implementation. On the other hand, the stack used in this implementation
will probably require dynamic memory allocation. So, it is unclear
whether the iterative implementation would be more or less efficient than
the recursive solution.

Problem: Lowest Common Ancestor

= Given the value of two nodes in a binary search tree, find the low-
est common ancestor. You may assume that both values already
exist in the tree. The function prototype is as follows:

int FindLowestCommonAncestor (node *root, int valuel,
int value2);

For example, assume 4 and 14 are given as valuel and value2,
respectively, for the tree in Figure 4.7. The lowest common ancestor
would be 8 because it’s an ancestor to both 4 and 14 and there is no
node lower on the tree that is an ancestor to both 4 and 14.




72

Chapter 4

Figure 4.7 suggests an intuitive algorithm: Follow the lines up from
each of the nodes until they converge. To implement this algorithm make
lists of all the ancestors of both nodes and then search through these two
lists to find the first node where they differ. The node right above this
divergence will be the lowest common ancestor. This is a good solution,
but there is a more efficient one.

The first algorithm doesn’t use any of the special properties of a binary
search tree. The tree could be any type of tree, and the method would
work. You should try to use some of the special properties of a binary
search tree to help you find the lowest common ancestor more efficiently.

Binary search trees have two special properties. First, every node has
zero, one, or two children. This fact doesn’t seem to help find a new algo-
rithm. Second, the left child’s value is less than or equal to the value of
the current node, and the right child’s value is greater than or equal to the
value of the current node. This property looks more promising.

Looking at the example tree, the lowest common ancestor to 4 and 14,
the node with value 8, is different from the other ancestors to 4 and 14 in
an important way. All the other ancestors are either greater than both 4
and 14 or less than both 4 and 14. Only 8 is between 4 and 14. You can use
this insight to design a better algorithm.

The root node is an ancestor to all nodes because there is a path from it
to all other nodes. Therefore, you can start at the root node and follow a
path through the common ancestors of both nodes. When your target val-
ues are both less than the current node, you go left. When they are both

20

10 14

Figure 4.7 Lowest common ancestor.



Trees and Graphs 73

greater, you go right. The first node you encounter that is between your
target values is the lowest common ancestor.
Based on this description, you can derive the following algorithm:

Examine the current node

If valuel and value?2 are less than the current node’s value
Examine the left child

If valuel and value2 are greater than the current node’s value
Examine the right child

Otherwise

The current node is the lowest common ancestor

This solution may seem to suggest using recursion because it is a tree
and the algorithm has a recursive structure to it, but recursion is not nec-
essary here. Recursion is most useful when moving through multiple
branches of a tree or examining some special pattern of nodes. Here you
are only traveling down the tree. It’s easy to implement this kind of tra-
versal iteratively.

int FindLowestCommonAncestor (node *root, int valuel,
int value2)

{

node *curNode = root;

while (1) {
/* Go to the left child */
if (curNode-s>value > valuel && curNode->value > value2)
curNode = curNode->left;

/* Go to the right child */
else if (curNode->value < valuel &&
curNode->value < value2)
curNode = curNode->right;

/* Else, you've found the correct node */
else
return curNode->value;

}

What’s the running time of this algorithm? You are traveling down a
path to the lowest common ancestor. Recall that traveling a path to any
one node takes O(log(n)). Therefore, this is an O(log(n)) algorithm. Also,
this is slightly more efficient than a similar recursive solution because you
don’t have the overhead of repeated function calls.

TP S T




Arrays ane

Arrays and strings occupy an intermediate space in the world of com-
puter data. They are more complex than simple, single-value types like
integers and floating-point numbers, but less complex than classes or
dynamic data structures. Arrays have some fundamental properties that
are constant across all languages and some implementation details that
are language specific. Strings tend to be more language dependent than
arrays, but they have a very close relationship to arrays, especially in C
and C++.

Arrays

An array consists of a number of variables of the same type arranged con-
tiguously in a block of memory. Because arrays play an important role in
every major language used in commercial development, we assume
you're at least somewhat familiar with their syntax and usage. With that
in mind, we focus on the theory and application of arrays with particular
attention to strings, an important array-related application.




76

Chapter 5

Like a linked list, an array provides an essentially linear form of stor-
age,! but its properties are significantly different. In a linked list, lookup is
always an O(n) operation, but array lookup is O(1) as long as you know
the index of the element you want. The provision regarding the index is
important—if you know only the value, lookup is still O(n) in the worst
case. For example, suppose you have an array of characters. Locating the
sixth character is O(1), but locating the character with value ‘w’ is O(n).

The price for this improved lookup is paid in decreased efficiency for
insertion and deletion of data in the middle of the array. Because an array
is accessed in terms of physical memory locations, it's not possible to cre-
ate or eliminate storage between any two elements as it is with a linked
list. Instead, you must move data within the array to make room for an
insertion or close the gap left by a deletion.

Arrays are not dynamic data structures: They have a finite, fixed num-
ber of elements. Memory must be allocated for every element in an array,
even if only part of the array is used. Arrays are best used when you
know how many elements you need to store before the program executes.
When the program needs a variable amount of storage, the size of the
array imposes an arbitrary limit on the amount of data that can be stored.
If you make the array large enough that the program always operates
below the limit, you will probably be wasting a lot of memory in the
unused portion of the array.

Dynamic arrays (sometimes called D-arrays) are dynamic data struc-
tures that have the properties of arrays but can change size to efficiently
store as much or as little data as necessary. We won’t go into the details of
implementing a dynamic array, but it is important to know that most
dynamic array implementations use static arrays internally. A static array
cannot be resized, so dynamic arrays are resized by allocating a new array
of the appropriate size, copying every element from the old array into the
new array and freeing the old array. This is an expensive operation, so
you should try to resize as infrequently as possible when programming
with dynamic arrays.

Each language handles arrays somewhat differently, giving each lan-
guage a different set of array programming pitfalls. We'll take a look at
arrays in three languages, C/C++, Java, and Perl, to get a feel for the
problems that can arise.

10f course, multidimensional arrays are not exactly linear, but they are hnplementec'l as linear
arrays of linear arrays (of linear arrays... repeated as needed), so even multidimensional arrays
are linear in each dimension.




Arrays and Strings

77

C/C++

Despite the differences between C and C++, they are very similar in their
treatment of arrays. In most cases, an array name is equivalent to a
pointer constant? to the first element of the array.® This means that you
can’t initialize the elements of one array with another array using a sim-

ple assignment.
For example, if you say

arrayA = arrayB; /* Compile error: arrayA is not an lvalue */

it is interpreted as an attempt to make arraya refer to the same area of
memory as arrayB. If arrayA has been declared as an array, this causes a
compile error because you can’t change the memory location to which
arrayA refers. To copy arrayB into arraya, you have to write a loop that
does an element-by-element assignment or use a library function like
memcpy.-

In C and C++, the compiler tracks only the location of arrays, not their
size. This means the programmer is completely responsible for keeping
track of array sizes. There is no bounds checking on array accesses. The
language won't complain if you store something in the twentieth element
of a ten-element array. Unfortunately, you will probably overwrite some
other data structure, leading to all manner of curious and difficult-to-find
bugs. A variety of development tools is available to help programmers
identify out-of-bounds array accesses and other memory-related prob-
lems in their C programs.

Java

Unlike a C array, a Java array is a unique reference type that is not inter-
changeable with a reference to an element of the array. As in C, arrays
cannot be copied with a simple assignment. If two array references have
the same type, assignment of one to the other is allowed, but it results in
both symbols referring to the same array.

“Pointers and constants can be confusing concepts separately; they are often nearly incompre-
hensible in combination. When we say pointer constant we mean a pointer declared like char
*const chrPtr that cannot be altered to point at a different place in memory, but that can be
used to change the contents of the memory it points to. This is not the same as the more com-
monly seen constant pointer, declared like const char *chrPtr, which can be changed to point
at a different memory location but cannot be used to change the contents of a memory location.
If you find this confusing, you're certainly not the only one.

3For an excellent discussion of when this analogy breaks down, see Expert C Programming: Deep
C Secrets by Peter Van Der Linden (Prentice-Hall, 1994).




78

Chapter 5

byte arrayA[]l = new byte[10], arrayB = new byte[l10];
arrayA = arrayB; // arrayA now refers to the same array as arrayB

Java tracks the size of arrays, and throws an ArrayIndexOutOfBounds-
Exception if you try to access an array out of bounds.

Perhaps the most peculiar feature of the Java array is that allocating an
array of objects does not actually construct the objects. You must con-
struct the objects yourself and assign them to the elements of the array.

Button myButtons[] = new Button[5]; // Buttons not yet constructed
for (int i = 0; 1 < 5; i++) {
myButtons [i] = new Button(); // Constructing Buttons

}

// All Buttons constructed

Perl

Perl arrays are very powerful data structures. We won't try to cover them
comprehensively here. Instead, we'll just hit the high points for compari-
son with other languages.

Perl is unique in that it has no static arrays: Its array type is a dynamic
array. If an array is accessed out of bounds, it simply resizes so the access
is within the new bounds. Because scalar is the only simple type in Perl,
there is only one array type. This is unlike most other languages where,
for instance, an array of floats would be a different type than an array of
integers.

In further contrast to most C-derived languages, you can initialize one
array with another:

@arrayA = @arrayB; # still two separate arrays, now with same contents
Perhaps the most common Perl array mistake is inadvertently evaluat-

ing an array in scalar context, in which case the array’s value is its size,
not the values of its elements. For instance:

@ = (1, 2, 3);
print @a; # prints 123
print @a + 2; # + creates scalar context, prints 5 instead of 345

Strings

Strings are simply sequences of characters. Most languages store strings
internally as arrays, although languages differ in how similarly they treat
arrays and strings. As before, we’ll look at each language separately.




Arrays and Strings

79

C

A C string is nothing more than a char array. Just as C doesn’t track the
size of arrays, it doesn’t track the size of strings. Instead, the end of the
string is marked with a NUL character, represented in the language as
'\o'. The character array must have room for the NUL terminator. For
instance, if you want to store a 10-character string, you need at least an
11-character array. This scheme makes finding the length of the string an
O(n) operation instead of O(1) as you might expect: strlen() (the library
function that returns the length of a string) must scan through the string
until it finds the end.

For the same reason that you can’t assign one C array to another, you
cannot copy C strings using the = operator. Instead, you generally use the
strepy () function.

It is often convenient to read or alter a string by addressing individual
characters of the array. If you change the length of a string in this manner,
you must make sure you write a NUL character ('\0') after the new last
character in the string, and that the character array you are working in is
large enough to accommodate the new string and terminator. It’s easy to
truncate a C string by setting the character after the new end of the string
to NUL.

C++

In general, C++ uses the same NUL terminated strings that C does. Using
the object-oriented facilities provided by C++, however, it is possible to
write a string class providing more extensive string functionality, such as
easy concatenation and dynamic string growth. Many class libraries sup-
ply such a class, for instance, the string class provided as a specializa-
tion of the basic_string template class by the Standard C++ Library.

Java

Java strings are objects of the java. lang.String class. Although Strings
can be readily converted to and created from character arrays, they are a
distinct type. Because methods of the String class allow you to read indi-
vidual characters from the strings, this affects syntax more than function
as far as reading is concerned.

Writing to strings is significantly different. Unlike a C string, which can
be written to at random, a Java String object is immutable: Once it is




Chapter 5

constructed, its contents can’t be changed. If you need to manipulate the
contents of a String, you must construct a StringBuffer from the
string. This restriction is not as onerous as it sounds. For instance, the
concatenation operator (+) creates a new string based on the contents of
the strings it is concatenating. A StringBuffer is really necessary only
when you need to alter a string character by character.

Perl

While C makes strings and arrays roughly synonymous, Perl takes the
opposite tack and treats strings as one of the kinds of data the scalar type
can hold. Although it is easy to transform a Perl string into an array of
characters using the split () function, it is rarely necessary, given the
rich set of operators and functions Perl provides for string manipulation.
In fact, many argue that Perl’s string and text manipulation facilities are
the best reason for using the language. Most notable among these is a
complete set of regular expression-based search and replace operators.
For example, suppose we wanted to make a string refer to the authors a
little more respectfully:

$Complaint = "On occasion, John and Noah rant incoherently.";
$Complaint =~ s/John and Noah/Mr. Mongan and Mr. Suojanen/;
print $Complaint;

# Prints:

# On occasion, Mr. Mongan and Mr. Suojanen rant incoherently.

Problem: First Non-repeated Character

= Write an efficient function to find the first non-repeated character
in a string. For instance, the first non-repeated character in “total”
is ‘0" and the first non-repeated character in “teeter” is ‘r’. Discuss
the efficiency of your algorithm.

At first, this task seems almost trivial. If a character is repeated, it must
appear in at least two places in the string. Therefore, you can determine
whether a particular character is repeated by comparing it with all other
characters in the string. It’s a simple matter to perform this search for
each character in the string, starting with the first. When you find a char-
acter that has no match elsewhere in the string you’ve found the first non-
repeated character.

What’s the time order of this solution? If the string is n characters long,
then in the worst case you'll make almost n comparisons for gach of the n




Arrays and Strings

characters. That gives worst case O(n?) for this algorithm. You are
unlikely to encounter the worst case for single-word strings, but for
longer strings, such as a paragraph of text, it’s likely that most characters
would be repeated, and the most common case might be close to the
worst case. The ease with which you arrived at this solution suggests that
there are better alternatives—if the answer were truly this trivial, the
interviewer wouldn’t bother you with the question. There must be an
algorithm with a worst case better than O(n?).4

Why was the previous algorithm O(n?)? One factor of n came from
checking each character in the string to see if it was non-repeated.
Because the non-repeated character could be anywhere in the string, it
seems unlikely that you’ll be able to improve efficiency here. The other
factor of n was due to searching the entire string when trying to look
up matches for each character. If you improve the efficiency of this search,
you’ll improve the efficiency of the overall algorithm. The easiest way
to improve search efficiency on a set of data is to put it in a data
structure that allows more efficient searching. What data structures can
be searched more efficiently than O(n)? Binary trees can be searched in
O(log(n)). Arrays and hashtables both have constant time element
lookup. Begin by trying to take advantage of an array or hashtable
because these data structures offer the greatest potential for im-
provement.

You'll want to be able to quickly determine whether a character is
repeated, so you'll need to be able to search the data structure by charac-
ter. This means you’ll have to use the character as the index® (in an array)
or key (in a hashtable). What values would you store in these data struc-
tures? A non-repeated character appears only once in the string, so if you
stored the number of times each character appeared, it would help you
identify non-repeating characters. You’ll have to scan the entire string
before you have the final counts for each character.

Once you've completed this, you could scan through all the count val-
ues in the array or hashtable looking for a 1. That would find a non-
repeated character, but it wouldn’t necessarily be the first one in the
original string.

Therefore, you need to search your count values in the order of the
characters in the original string. This isn’t difficult—you just look up the

“The algorithm described can be improved somewhat by comparing each character with only
the characters following it because it has already been compared with the characters preceding
it. This would give you a total of (1 — 1) + (n — 2)+ ...+ 1 comparisons. As discussed in Chapter 2,
this is still O(n2).

5You can cast a character to an integer in order to use it as an index.



82 Chapter 5

count value for each character until you find a 1. When you find a 1,
you've located the first non-repeated character.

Consider whether this new algorithm is actually an improvement. You
will always have to go through the entire string to build the count data
structure. In the worst case, you might have to look up the count value for
each character in the string to find the first non-repeated character.
Because the operations on the array or hash you're using to hold the
counts are constant time, the worst case would be two operations for each
character in the string, giving 21, which is O(n)—a major improvement
over the previous attempt.

Both hashtables and arrays provide constant-time lookup; you need to
decide which one you will use. Hashtables have a higher lookup over-
head than arrays. On the other hand, an array would initially contain ran-
dom values that you would have to take time to set to zero, whereas a
hashtable initially has no values. Perhaps the greatest difference is in
memory requirements. An array would need an element for every possi-
ble value of a character. This would amount to a relatively reasonable 256
elements if you were processing ASCII strings, but if you had to process
Unicode strings you would need more than 65,000 elements (Unicode
uses 16-bit characters). In contrast, a hashtable would require storage for
only the characters that actually exist in the input string. So, arrays are a
better choice for long strings with a limited set of possible character val-
ues; hashtables are more efficient for shorter strings or when there are
many possible character values.

You could implement the solution either way. We’ll assume the code
may need to process Unicode strings and choose the hashtable implemen-
tation. You might choose to write the function in Java, which has built-in
support for both hashtables and Unicode. In outline form, the function
you'll be writing looks like this:

First, build the character count hashtable:
For each character
If no value is stored for the character, store 1
Otherwise, increment the value
Second, scan the string:
For each character

Return character if count in hashtable is 1

If no characters have count 1, return null

—— |



Arrays and Strings

Now implement the function. Because you don’t know what class your
function would be part of, implement it as a public static function (this is
equivalent to a normal C function). You'll also need to remember that the
Java Hashtable stores Objects, which means you can store the reference
type Integer, but not the fundamental type int.

public static Character FirstNonRepeated(String str)

{
Hashtable charHash = new Hashtable();
int i, length;
Character c;
Integer intgr;

length = str.length();

// Scan str, building hashtable
for (i = 0; i < length; i++) {
¢ = new Character(str.charat(i));
intgr = (Integer) charHash.get({(c);
if (intgr == null) {
charHash.put (¢, new Integer(l));
} else {
// Increment count corresponding to ¢
charHash.put (¢, new Integer(intgr.intvalue() + 1));

}

// Search hashtable in order of str
for (i = 0; i < length; i++) {
¢ = new Character(str.charaAt(i));
if (((Integer)charHash.get(c)).intValue() == 1)
return c;

}

return null;

Problem: Remove Specified Characters

= Write an efficient function in C that deletes characters from a
string. Use the prototype

void RemoveChars(char str[], char removel]);

where any character existing in remove must be deleted from stx.
For example, given a str of “Battle of the Vowels: Hawaii vs.
Grozny” and a remove of “aeiou”, the function should transform
str to “Bttl f th Vwls: Hw vs. Grzny”. Justify any design decisions
you make and discuss the efficiency of your solution.



84  Chapter5

This problem breaks down into two separate tasks. For each character
in str, you must determine whether it should be deleted. Then, if appro-
priate, you must delete the character. We’ll discuss the second task, dele-
tion, first.

Strings are stored in arrays, so your task is to delete an element from an
array. An array is a contiguous block of memory, so you can’t simply
remove an element from the middle as you might with a linked list.
Instead, you'll have to rearrange the data in the array so it remains a con-
tiguous sequence of characters after the deletion. For example, if you
wish to delete ‘c’ from the string “abcd” you could either shift ‘a” and ‘b’
forward one position (toward the end) or shift ‘d” back one position
(toward the beginning). Either approach would leave you with the char-
acters “abd” in contiguous elements of the array. In addition to shifting
the data, you need to decrease the size of the string by one character. If
you shift characters before the deletion forward, you need to eliminate
the first element; if you shift the characters after the deletion backward
you need to eliminate the last element. In C, you can easily eliminate the
last element of a string by writing a NUL character (' \0') after the new
last character. On the other hand, eliminating characters from the begin-
ning of the string would be much more problematic. Shifting characters
backward seems to be the cleanest choice.

How would the proposed algorithm fare in the worst-case scenario
where you need to delete all the characters in str? For each deletion, you
would shift all the remaining characters back one position. If str were n
characters long, you would move the last character n — 1 times, the next to
last n — 2 times, and so on, giving worst case O(1?) for the deletion.® Mov-
ing the same characters many times seems awfully inefficient. How might
you avoid this?

What if you allocated a temporary string buffer and built your modi-
fied string there instead of in place? Then you could simply copy the
characters you need to keep into the temporary string, skipping the char-
acters you want to delete. When you finish building the modified string,
you can copy it from the temporary buffer back into str. This way you
move each character at most twice, giving O(n) deletion. However, you've
incurred the memory overhead of a temporary buffer the same size as the
original string and the time overhead of copying the modified string back
over the original string. Is there any way you could avoid these penalties
while retaining your O(n) algorithm?

°If you start at the end of the string and work back toward the beginning, it's somewhat more
efficient but still O(12) in the worst case.




Arrays and Strings 85

To implement the O(n) algorithm just described, you’'ll need to track a
source position for the read location in the original string and a destina-
tion position for the write position in the temporary buffer. These posi-
tions both start at zero. Source will be incremented every time you read
and destination every time you write. In other words, when you copy a
character you'll increment both positions, but when you delete a charac-
ter you'll increment only the source position. This means the source posi-
tion will always be the same as or ahead of the destination position. Once
you read a character from the original string (that is, the source position
has advanced past it), you no longer need that character—in fact, you're
just going to copy the modified string over it. Because the destination
position in the original string is always a character you don’t need any-
more, you can write directly into the original string, eliminating the tem-
porary buffer entirely. This is still an O(r) algorithm, but without the
overhead of the earlier version.

Now that you know how to delete characters, consider the task of
deciding whether to delete a particular character. The easiest way to do
this is to compare the character to each character in remove and delete it if
it matches any of them. How efficient is this? If str is n characters long
and remove is m characters long, then in the worst case you make m com-
parisons for each of n characters, so the algorithm is O(nm). You can’t
avoid checking each of the n characters in str, but perhaps you can make
the lookup that determines whether a given character is in remove better
than O(m).

If you've read the solution to the problem on page 80, this should
sound very familiar. Just as you did in that problem, you can use remove
to build an array” or hashtable that has constant time lookup, thus giving
an O(n) solution. We've discussed the trade-offs between hashes and
arrays. In this case, an array is most appropriate when str and remove
are long and characters have relatively few possible values (for example,
ASCII strings). A hashtable may be a better choice when str and remove
are short or characters have many possible values (for example, Unicode
strings). This time, we'll assume that we're processing long ASCII strings
and use an array instead of a hashtable.

Coding in C, your function will have three parts. First, set all the ele-
ments in your lookup array to false. Next, iterate through each character

7But why build an array? Isn’t remove already an array? Yes it is, but it is an array of characters
indexed by an arbitrary (that is, meaningless for this problem) position, requiring you to search
through each element. The array we refer to here would be an array of boolean values indexed
by all the possible values for a char. This lets you determine whether a character is in remove

, by checking a single element.




86  Chapter 5

in remove, setting the corresponding value in the lookup array to true.
Finally, iterate through str with a source and destination index, copying
each character only if its corresponding value in the lookup array is false.

Now that you’ve combined both subtasks into a single algorithm, ana-
lyze the overall efficiency for str of length n and remove of length m.
Because the size of a character is fixed for a given platform, zeroing the
array is constant time. You perform a constant time assignment for each
character in remove, so building the lookup array is O(m). Finally, you do
at most one constant time lookup and one constant time copy for each
character in str, giving O(n) for this stage. Summing these parts yields
O(n + m), so the algorithm has linear running time.

Having justified and analyzed your solution, you're ready to code it:

void RemoveChars (char str([], char removel[])

{

int src, dst, removeArray[256];

/* Zero all elements in array */
for (src = 0; src < 256; src++) {
removeArray [src] = 0;

}

/* Set true for chars to be removed */
src = 0;
while (remove[src]) {

removeArray [remove [src]] = 1;

Src++;

}

/* Copy char unless it must be removed */
src = dst = 0;

do { /* do..while terminates after copying NUL */
if (!removeArray[str([srcl]) {
str{dst++] = strlsrc]l;

}

} while (strisrc++]);

}

For comparison, it’s interesting to note that this problem has a one-line
solution in Perl:

Sstr =~ s/[$remove]//g;8

*If you’re a Perl aficionado, you may wonder why we didn’t use tr/// here. We chose s/// $0
we could avoid the additional complication of using an eval, which would be necessary with
tr/// because it builds its translation table at compile time. We would need to use tr/// for
an O(n) solution. Also, it would be wise to escape any metacharacters in $remove like this $str
=~ s/[\Q$remove\E]//g;, but we didn’t want to make the example look too intimidating.

'i"i.-...IiIlIIiiil-‘I-..'-IiIIIL____________________________;_________;_:ﬂ-I‘-."".i'..-lhinn-nn-uﬂiﬂ




Arrays and Strings

87

The existence of simple, one-line solutions to problems like this is one
of the main reasons many people use Perl, especially for text processing.
On the other hand, the incomprehensibility of this line to programmers
not familiar with the language is one of the main reasons many people
don’t use Perl. Should you fall into the latter category, don’t despair—it’s
not as complicated as it looks. s/// is the replacement operator. It looks
for whatever is between the first pair of slashes (in this case, any of the
characters in $remove) and replaces them with whatever is between the
second set (nothing, in this case). The g at the end means replace all
occurrences, not just the first, and $str =~ tells it to perform the replace-
menton $str.

Problem: Reverse Words

= Write a function that reverses the order of the words in a string.
For instance, your function should transform the string “Do or do
not, there is no try.” to “try. no is there not, do or Do”. Assume that
all words are space delimited and treat punctuation the same as
letters.

You probably already have a pretty good idea how you're going to start
this problem. Because you need to operate on words, you have to be able
to recognize where words start and end. You can do this with a simple
token scanner that iterates through each character of the string. Based on
the definition given in the problem statement, your scanner will differen-
tiate between non-word characters, namely space, and word characters,
which for this problem are all characters except space. A word begins, not
surprisingly, with a word character and ends at the next non-word char-
acter or the end of the string.

The most obvious approach is to use your scanner to identify words,
write these words into a temporary buffer, and then copy the buffer back
over the original string. To reverse the order of the words, you will either
have to scan the string backward to identify the words in reverse order or
write the words into the buffer in reverse order (starting at the end of the
buffer). It doesn’t matter which method you choose; in the following dis-
cussion we’ve chosen to identify the words in reverse order.

As always, you should consider the mechanics of how this will work
before you begin coding. First, you'll need to allocate a temporary buffer
of the appropriate size. Then you'll enter the scanning loop, starting with
the last character of the string. When you find a non-word character,
you can write it directly to the buffer. When you find a word character,




Chapter 5

however, you can’t write it immediately to the temporary buffer. Because
you're scanning the string in reverse, the first word character you
encounter is the last character of the word, so if you were to copy the
characters in the order you find them, you’d write the characters within
each word backward. Instead, you need to keep scanning until you find
the first character of the word and then copy each character of the word
in the correct, non-reversed order.” When you're copying the characters of
a word, you need to be able to identify the end of the word so that you
know when to stop. You could do this by checking whether each charac-
ter is a word character, but because you already know the position of the
last character in the word, a better solution is to continue copying until
you reach that position.

An example may help to clarify. Suppose you were given the string
“piglet quantum”. The first word character you encounter is ‘m’. If you
were to copy the characters as you found them, you would end up with
the string “mutnaug telgip”, which is not nearly as good a name for a
techno group as the string you were supposed to produce, “quantum
piglet”. To get “quantum piglet” from “piglet quantum”, you need to
scan until you get to ‘q’, and then copy the letters in the word in the for-
ward direction until you get back to ‘m’ at position 13. Next, copy the
space character immediately because it’s a non-word character. Then, just
as for “quantum”, you would recognize the character '’ as a word charac-
ter, store position 5 as the end of the word, scan backward to ‘p’, and
finally write the characters of “piglet” until you got to position 5.

Finally, after you scan and copy the whole string, write a NUL charac-
ter to terminate the string in the temporary buffer and call strcpy to copy
the buffer back over the original string. Then you can deallocate the tem-
porary buffer and return from the function. This process is illustrated
graphically in Figure 5.1.

It's obviously important that your scanner stop when it gets to the first
character of the string. Although this sounds simple, it can be easy to for-
get to check that the read position is still in the string, especially when the
read position is changed at more than one place in your code. In this func-
tion, you move the read position in the main token scanning loop to get to
the next token and in the word scanning loop to get to the next character
of the word. Make sure neither loop runs past the beginning of the string.

Programmed in C, the algorithm described so far looks like the
following:

“You may think you could avoid this complication by scanning the string forward and writing
the words in reverse. However, you then have to solve a similar, related problem of calculating
the start position of each word when writing to the temporary buffer.



Arrays and Strings

String

E t ,ad T o
backto start ofword at ¢ 218 1< e[ Talula[m[ee]=[\]
-—

Copy forward from g tom [p[ifg[1]eft] [a[ula[n[e]u]m]V]
—————-

Copy space directly [p[i[g[1]e[c] [afula[n]t]ulm]V] [a]ula[n]e[ulm]
-

—

Encourter ¢, and.scan (oo iTele] [alsla e SmlY] [a[s[a[alc[s]s]

back to start of word at p
—

Copy forward fromptot [p[ifgf1[e[t] [a[ula[n]cTum]V] Mu|a|n|t|ul;r|p|i[gllle

———- e eeeeaseaneaaa >

NUL terminate buffer [p[i[g[1]e[t] Tafulalnlt[u[n][v] [q[ula]n][c]u]m] [p]ifg[i]ele]e

strepy buffer over string [a[ua[n]t[ulm] Jp[iga]e[c[V] [q[ula[n[c]u]m[ [p[i[a]1]e[c]V]

............................................ >

Figure 5.1: Reversing "piglet quantum".

int ReverseWords (char str(])

char *buffer;
int tokenReadPos, wordReadPos, wordEnd, writePos = 0;

/* Position of the last character is length - 1 */
tokenReadPos = strlen(str) - 1;

buffer = (char *) malloc (tokenReadPos + 2);
if (!buffer)

return 0; /* ReverseWords failed */
while (tokenReadPos >= 0) {

if (strltokenReadPos] == ' ') { /* Non-word characters */

/* Write character */
buffer [writePos++] = str[tokenReadPos--];

} else { /* Word characters */

/* Store position of end of word */
wordEnd = tokenReadPos;

/* Scan to next non-word character */
while (tokenReadPos >= 0 && str(tokenReadPos] != ' ')




Chapter 5

tokenReadPosg--;

/* tokenReadPos went past the start of the word */
wordReadPos = tokenReadPos + 1;

/* Copy the characters of the word */
while (wordReadPos <= wordEnd) |
buffer [writePos++] = str[wordReadPos++];

}
}
}

/* NUL terminate buffer and copy over str */
buffer [writePos] = '\0';
strcpy(str, buffer);

free (buffer);

return 1; /* ReverseWords successful */

}

The preceding token scanner-based implementation is the general-case
solution for this type of problem. It is reasonably efficient, and its func-
tionality could easily be extended. It is important that you are able to
implement this type of solution, but the solution is not perfect. All the
scanning backward, storing positions, and copying forward is somewhat
lacking in algorithmic elegance. The need for a temporary buffer is also
less than desirable.

Often, interview problems have obvious general solutions and less obvi-
ous special-case solutions. The special-case solution may be less extensible
than a general solution, but more efficient or elegant. Reversing the words
of a string is such a problem. You have seen the general solution, but a spe-
cial-case solution also exists. In an interview, you might have been steered
away from the general solution before you got to coding it. We followed
the general solution through to code because token scanning and string
scanning are important techniques that we wanted to illustrate.

One way to improve an algorithm is to focus on a particular, concrete
deficiency and try to remedy that. Because elegance, or lack thereof, is
hard to quantify, you might try to eliminate the need for a temporary
buffer from your algorithm. You can probably see that this is going to
require a significantly different algorithm. You can’t simply alter the pre-
ceding approach to write to the same string it reads from—by the time
you get halfway through you will have overwritten the rest of the data
you need to read.

Rather than focus on what you can’t do without a buffer, you should
turn your attention to what you can do. It is possible to reverse an entire



Arrays and Strings

string in place by exchanging characters. Try an example to see whether
this might be helpful: “in search of algorithmic elegance” would become
“ecnagele cimhtirogla fo hcraes ni”. Look at that! The words are in exactly
the order you need them, but the characters in the words are backward.
All you have to do is reverse each word in the reversed string. You can do
that by locating the beginning and end of each word using a scanner simi-
lar to the one used in the preceding implementation and calling a reverse
function on each word substring.

Now you just have to design an in-place reverse string function. The
only trick is to remember that there’s no one-statement method of
exchanging two values in C—you have to use a temporary variable and
three assignments. Your reverse string function should take a string, a
start index, and an end index as arguments. Begin by exchanging the
character at the start index with the character at the end index, then incre-
ment the start index and decrement the end index. Continue like this until
the start and end index meet in the middle (in a string with odd length) or
end is less than start (in a string with even length)—put more succinctly,
continue while end is greater than start.

In C, these functions would look like the following:

void ReverseWords (char str(])

{

int start = 0, end = 0, length;
length = strlen(str);

/* Reverse entire string */
ReverseString(str, start, length - 1);

while (end < length) ({
if (strlend] != ' ") { /* Skip non-word characters */

/* Save position of beginning of word */
start = end;

/* Scan to next non-word character */
while (end < length && strlend] != ' ')
end++;

/* Back up to end of word */
end--;

/* Reverse word */
ReverseString(str, start, end);

}

end++; /* Advance to next token */




92

Chapter 5

}

return;

}

void Reversestring (char str[], int start, int end) {
char temp;
while (end > start) {
/* Exchange characters */
temp = str(start];
str[start] = str[end];
str[end] = temp;

/* Move indices towards middle */
start++; end--;

}

return;

}

This solution does not need a temporary buffer and is considerably
more elegant than the previous solution. It’s also more efficient, mostly
because it doesn’t suffer from dynamic memory overhead and doesn’t
need to copy a result back from a temporary buffer.

As a final aside on this problem, this is another place where many
pages of algorithm design and C code can be reduced to a single line of
Perl:

S$ReversedWords = join(" ", reverse(split(/ /, $Words)) ) ;

In this example, split separates $Words on space delimiters to gener-
ate a list of words, reverse reverses the order of the list of words, and
join replaces the spaces and concatenates the resultant list into a single
string. Though this is much easier and faster to write in Perl than C, the
resultant code is significantly less efficient, providing yet another exam-
ple of the trade-offs between programmer-efficient high-level languages
and program-efficient low-level languages.

Problem: Integer/String Conversions

= Write functions for the following prototypes. The first function
should convert an ASCII string to a signed integer, and the second
function a signed integer to an ASCII string.

int StrTolnt (char str(]);
void IntToStr (int num, char str(l);

Assume the buffer passed to IntTostr is large enough to accom-
modate any number within the range of an int. Also assume that
the string passed to strToInt contains only digits and *~, that it is



Arrays and Strings 93

a properly formatted integer number, and that the number is
within the range of an int.

In C, you normally perform these conversions using sscanf () and
sprintf (). You should mention to the interviewer that under normal cir-
cumstances, you know better than to duplicate functionality provided by
standard libraries. This doesn’t get you off the hook—you still have to
implement the functions called for by the problem.

You can start with strToInt. This function will be passed a valid string
representation of an integer. Think about what that gives you to work
with. Suppose you were given “137”. You would have a three-character
string with the ASCII value for ‘1’ at position 0, ‘3’ at position 1, and ‘7’ at
position 2. From grade school, you recall that the 1 represents 100 because
it is in the hundreds place, the 3 represents 30 because it is in the tens
place, and the 7 is just 7 because it is in the ones place. Summing these
values gives the complete number: 100 + 30 + 7 = 137.

This gives you a framework for dissecting the string representation and
building it back into a single integer value. You need to determine
the numeric (integer) value of the digit represented by each character,
multiply that value by the appropriate place value, and then sum these
products.

Consider the ASCII character to numeric value conversion first. What
do you know about the ASCII values of digit characters? They are all
sequential: ‘0" has an ASCII value one less than ‘1’, which in turn is fol-
lowed by ‘2’,“3’, and so on.!? So the ASCII value of a digit character is
equal to the digit plus the ASCII value of ‘0".!! This means you subtract
the ASCII value of ‘0’ from a digit character to find the numeric value of
the digit. You probably don’t remember the ASCII value of ‘0’ off the top
of your head, but the compiler knows. You can just say -'0', which the
compiler will interpret as “subtract the ASCII value of 0.”

Next you need to know what place value each digit must be multiplied
by. Working through the digits left to right seems problematic because
you don’t know what the place value of the first digit is until you know
how long the number is. For instance, the first character of “367” is identi-
cal to that of “31”, although it represents 300 in the first case and 30 in the
second case. The most obvious solution is to scan the digits from right to
left because the rightmost position is always the ones place, the next to
rightmost is always the tens, and so on. This allows you to start at the

190f course, if you didn’t know this, you’d have to ask the interviewer. ,
Note that “the ASCII value of ‘0’ is the non-zero code number representing the character 0'

I




94

Chapter 5

right end of the string with a place value of 1 and work backward
through the string, multiplying the place value by 10 each time you move
to a new place. This method, however, requires two multiplications per
iteration, one for multiplying the digit by the place value and another for
increasing the place value. That seems a little inefficient.

Perhaps the alternative of working through the characters left to right
was too hastily dismissed. Is there a way you could get around the prob-
lem of not knowing the place value for a digit until you’ve scanned the
whole string? Returning to the example of “367”, when you encounter the
first character, ‘3, you register a value of 3. If the next character were the
end of the string, the number’s value would be 3. However, you
encounter ‘6’ as the next character of the string. Now the ‘3’ represents 30
and the 6 represents ‘6. On the next iteration, you read the last character,
‘7', so the ‘3’ represents 300, the ‘6’ 60, and the ‘7’ 7. In summary, the value
of the number you've scanned so far increases by a factor of 10 every time
you encounter a new character. It really doesn’t matter that you don’t ini-
tially know whether the ‘3’ represents 3, 30, or 30,000—every time you
find a new digit you just multiply the value you've already read by 10
and add the value of the new digit. You're no longer tracking a place
value, so this algorithm saves you a multiplication on each iteration. The
optimization described in this algorithm is frequently useful in com-
puting checksums and is considered clever enough to merit a name:
Horner’s Rule.

Up to this point, we’ve discussed only positive numbers. How can you
expand your strategy to include negative numbers? A negative number
will have a ‘-’ character in the first position. You'll want to skip over the -’
character so you don’t interpret it as a digit. After you've scanned all the
digits and built the number, you’'ll need to change the number’s sign so
that it's negative. You can change the sign by multiplying by —1. You have
to check for the ’-’ character before you scan the digits so you know
whether to skip the first character, but you can’t multiply by negative 1
until after you've scanned all the digits. One way around this problem is
to set a flag if you find the -’ character and then multiply by -1 only if the
flag is set.

In summary, the algorithm is as follows:

Start number at 0
If the first character is ‘-’
Set the negative flag
Start scanning with the next character



Arrays and Strings 95

For each character in the string
Multiply number by 10
Add (digit character - '0’) to number

Return number

Coding this in C gives:

int StrTolInt (char str[])

{

while (str[il) ({
num *= 10;

num += {(str[i++] - '0');
}
if (isNeg)

num *= -1;

return num;

}

Before you declare this function finished, you should visually check it
for cases that may be problematic. At minimum, you should check -1, 0,
and 1, so you've checked a positive value, a negative value, and a value
that’s neither positive nor negative. You should also check a multidigit
value like 324 to be sure the loop has no problems. The function appears
to work properly for these cases, so you can move on to IntToStr.

In IntTostr, you will be performing the inverse of the conversion you
did in StrToInt. Given this, much of what you discovered in writing
StrTolInt should be of use to you here. For instance, just as you con-
verted ASCII digits to integer values by subtracting ‘0’ from each digit,
you can convert integer values back to ASCII digits by adding ‘0’ to each
digit.

Before you can convert values to ASCII characters, you need to know
what those values are. Consider how you might do this. Suppose you
have the number 732. Looking at this number’s decimal representation on
paper, it seems a simple matter to identify the digit values 7, 3, and 2.
However, you must remember that the computer isn’t using a decimal
representation, but rather the binary representation 1011011100. Because i




96 Chapter 5

ou can’t select decimal digits directly from a binary number, you'll have
to calculate the value of each digit. It seems logical to try to find the digit
values either left to right or right to left.

Try left to right first. Integer dividing 732 by the place value (100) gives
the first digit, 7. But now if you integer divide by the next place value (10)
you get 73, not 3. It looks as if you need to subtract the hundreds value you
found before moving on. Starting over with this new process gives you this:

732 + 100 = 7 (first digit); 732 — 7 x 100 = 32
32 + 10 = 3 (second digit); 32 -3 x 10 =2
2 +1 =2 (third digit)

To implement this algorithm, you're going to have to find the place
value of the first digit and divide the place value by 10 for each new digit.
This algorithm seems workable but complicated. What about working
right to left?

Starting again with 732, what arithmetic operation can you perform to
yield 2, the rightmost digit? 732 modulo 10 will give you 2.2 Now how
can you get the next digit? 732 modulo 100 gives 32. You could integer
divide this by 10 to get the second digit, 3, but now you have to track two
separate place values.

What if you did the integer divide before the modulo? Then you’d have
732 integer divide by 10 is 73; 73 modulo 10 is 3. Repeating this for the
third digit you have 73 / 10 =7;7 % 10 = 7. This seems like an easier solu-
tion—you don’t even have to track place values, you just divide and
modulo until there’s nothing left.

The major downside of this approach is that you find the digits in
reverse order. Because you don’t know how many there will be until
you’ve found them all, you don’t know where in the string to begin writ-
ing. You could run through the calculations twice—once to find the num-
ber of digits so you know where to start writing them and again to
actually write the digits—but this seems wasteful. Perhaps a better solu-
tion is to write the digits out backward as you discover them and then
reverse them into the proper order when you're done. You could do this
in place in the output string, or because the largest possible value of an
integer yields a relatively short string, you could write the digits into a
temporary buffer and then reverse them into the final string.

2Modulo gives the remainder of an integer division. In C and C-like languages, the modulo
operator is %.



Arrays and Strings

97

Again, we've ignored negative numbers so far. This modulo-based
approach doesn’t work well with negative numbers. For instance, -32 %
10 is 8, not -2 or 2. You can imagine checking for the case of a negative
number and then making an appropriate adjustment to each digit. This
seems workable but complicated and inefficient. In strToInt, you treated
the number as if it were positive and then made an adjustment at the end
if it was, in fact, negative. How might you employ this type of strategy
here? You could start by multiplying the number by -1 if it were negative.
Then it would be positive, so treating it as a positive number wouldn’t be
a problem. The only wrinkle would be that you’d need to write a ‘-’ if the
number had originally been negative. But this isn’t difficult—you just
have to set a flag indicating that the number is negative when you multi-
ply by -L.

You've solved all the important subproblems in IntToStr—now
assemble these solutions into an outline you can use to write your code.

If number less than zero
Multiply number by -1
Set negative flag
While number not equal to 0
Add ‘0’ to number % 10 and write this to temp buffer
Integer divide number by 10
If negative flag is set
Write *~ into next position in temp buffer
Write characters in temp buffer into output string in reverse order
Terminate output string with a NUL.
Rendering this in C might give the following:

#define MAX DIGITS_INT 10

void IntToStr(int num, char str[])

{
int 1 = 0, j = 0, isNeg = 0;
/* Buffer big enough for largest int, - sign and NUL */
char temp[MAX DIGITS_INT + 2];

/* Check to see if the number is negative */
if (num < 0) {

num *= -1;

isNeg = 1;



98 Chapter 5

/* Fill buffer with digit characters in reverse order */

while (num) {
temp (i++] = (num % 10) + '0';
num /= 10;

if (isNeg)
temp [i++4] = '-';

/* Reverse the characters */
while (i > 0)
str[j++] = temp[--il;

/* NUL terminate the string */
str[j]l = '"\0';

}

Again, check the same potentially problematic cases you tried for
StrTolInt (multidigit, -1, 0, and 1). Multidigit numbers, ~1, and 1 cause
no problems, but if num is 0 you never go through the body of the while
loop. This causes the function to write an empty string instead of “0”.
How can you fix this bug? You need to go through the body of the while
loop at least once, so that you write a ‘0’ even if num starts at 0. You can
ensure that the body of the loop is executed at least once by changing it
from a while loop to a do...while loop. This fix yields the following code,
which can handle converting 0 as well as positive and negative values to
strings.

#define MAX_DIGITS_INT 10

void IntToStr (int num, char str[])

{
int i = 0, j = 0, isNeg = 0;
/* Buffer big enough for largest int, - sign and NUL */
char temp[MAX DIGITS_INT + 2];

/* Check to see if the number is negative */
if (num < 0) {

num *= -1;

isNeg = 1;

/* Fill buffer with digit characters in reverse order */
do {

temp[i++] = (num % 10) + '0';

num /= 10;
} while (num);

if (isNeg)



Arrays and Strings

temp [i++] = '-';

/* Reverse the characters */
while (i > 0)
str{j++] = temp{--1i];

/* NUL terminate the string */
str[j] = '"\0';




Recursion is a deceptively simple concept: Any function or subroutine
that calls itself is recursive. Despite this apparent simplicity, understand-
ing and applying recursion can be surprisingly complex. One of the major
barriers to understanding recursion is that general descriptions tend to
become highly theoretical, abstract, and mathematical. Although there is
certainly value in that approach, we will instead follow a more pragmatic
course, focusing on example, application, and comparison of recursive
and iterative (non-recursive) algorithms.

Recursion is most useful for tasks that can be defined in terms of simi-
lar subtasks. For example, sort, search, and traversal problems often have
simple recursive solutions. A recursive function performs a task in part
by calling itself to perform the subtasks. At some point, the function
encounters a subtask that it can perform without calling itself. This case,
where the function does not recurse, is called the base case; the former,
where the function calls itself to perform a subtask, is referred to as the
recursive case.

T Recursive algorithms have two types of cases, recursive cases
and base cases.




102 Chapter 6

We can illustrate these concepts with a simple and commonly used
example: the factorial operator. n/ (pronounced “n factorial”) is essentially
the product of all integers between n and 1. For instance, 4/ =4 x3x2x 1
= 24. n! can be more formally defined as

nl=nm-1)!
0l=1/=1

This definition leads easily to a recursive implementation of factorial.
The task is determining the value of n/, and the subtask is determining
the value of (n — 1)! In the recursive case, when n is greater than 1, the
function calls itself to determine the value of (n — 1)! and multiplies that
by n. In the base case, when  is 0 or 1, the function simply returns 1. Ren-
dered in C, this looks like the following:

int Factorial(int n) {

if (n > 1) { /* Recursive case */
return Factorial(n-1) * n;

}

else { /* Base case */
return 1;

}

}

Figure 6.1 illustrates the operation of this function when computing 4/.
Notice that n decreases by 1 each time the function recurses. This ensures
that the base case will eventually be reached. If a function is written incor-
rectly such that it does not always reach a base case, it will recurse infi-
nitely. In practice, there is usually no such thing as infinite recursion:!
eventually a stack overflow occurs and the program crashes—a similarly
catastrophic event.

m Every recursive case must eventually lead to a base case.

Our implementation of factorial represents an extremely simple exam-
ple of a recursive function. In many cases, your recursive functions
may need additional data structures or an argument that tracks the recur-
sion level. Often the best solution in such cases is to move the data struc-
ture or argument initialization code into a separate function. This

There is a form of recursion, called tail recursion, that can be optimized by the compiler to use
the same stack frame for each recursive call. An appropriately optimized tail recursive algo-
rithm could recurse infinitely because it wouldn’t overflow the stack.



Recursion 103

Factorial (4) {
if (4>1) {
return Factorial (3) * 4;
L » Factorial (3) {
if(3>1) {
return Factorial (2) * 3;
Factorial (2) {
if(2>1) {
return Factorial (1) * 2;
Factorial (1) {

if(1>1) {
} else {

;——} return 1;

; return 1 * 2; }
return 2 * 3;
Y } )
return 6 * 4;
} }

Figure 6.1 Computation of 4 factorial.

wrapper function, which performs initialization and then calls the purely
recursive function, provides a clean, simple interface to the rest of the
program.

For example, suppose you needed a factorial function that would
return all of its intermediate results (factorials less than n), as well as the
final result (n/). You would most naturally return these results as an inte-
ger array, which means the function would need to allocate an array. You
would also need to know where in the array each result should be writ-
ten. These tasks are most easily accomplished using a wrapper function,
as follows:

int *AllFactorials(int n) /* Wrapper function */

{

int *results;

int length = (n == 0 ? 1 : n);
results = (int *) malloc(sizeof (int) * length);
if (!results)

return NULL;
DoAllFactorials(n, results, 0);
return results;

}

int DoAllFactorials(int n, int *results, int level)

{




104 Chapter 6

if (n > 1) { /* Recursive case */
results([level] = n * DoAllFactorials(n - 1, results, level + 1);
return results[level];

}

else { /* Base case */
results[level] = 1;
return 1;

}

You can see that using a wrapper function hides the messy details of
memory allocation and recursion level tracking without cluttering the
recursive function. In this case, it probably would have been possible to
determine the appropriate array index from n, avoiding the need for the
level argument, but in many cases there will be no alternative to track-
ing the recursion level as we have shown here.

.]m- It may be useful to write a separate wrapper function to do
initialization for a complex recursive function.

Although recursion is a very powerful technique, it is not always the
best and rarely the most efficient approach. This is due to the relatively
large overhead for function calls on most platforms. For a simple recur-
sive function like factorial, many computer architectures spend more time
on function call overhead than the actual calculation. Iterative functions,
which use looping constructs instead of recursive function calls, do not
suffer from this overhead and are frequently more efficient.

.]m- Iterative solutions are usually more efficient than recursive
solutions.

Any problem that can be solved recursively can also be solved iteratively.
Iterative algorithms are often quite easy to write, even for tasks that might
appear to be fundamentally recursive. For instance, an iterative implemen-
tation of factorial is relatively simple. It may be helpful to expand the defin-
ition of factorial, such that we describe n! as the product of every integer
between n and 1, inclusive. We can use a for loop to iterate through these
values and calculate the product. In C, we would write the following:

int Factorial({int i) {

int n, val = 1;
for (n = 1; n » 1; n==) /* n of 0 or 1 fall through */

val *= n;
return val;




Recursion

This implementation is significantly more efficient than our previous
recursive implementation. In one benchmark test, it runs almost three
times faster than the recursive alternative. Although it represents a differ-
ent way of thinking about the problem, it’s not really any more difficult to
write than the recursive implementation.

For some problems, there are no obvious iterative algorithms. It is
possible, though, to implement a recursive algorithm without using
recursive function calls. Recursive function calls are generally used to
preserve the current values of local variables so these values can be
restored when the subtask performed by the recursive function call is
completed. Because local variables are allocated on the program’s stack,
each recursive instance of the function has a separate set of the local
variables. Thus, recursive function calls implicitly store variable values
on the program’s stack. You can eliminate the need for recursive function
calls by allocating your own stack and manually storing and retrieving
values of local variables from this stack. Implementing this type of
function tends to be significantly more complicated than implementing
an equivalent function using recursive function calls. Iterative imple-
mentations of recursive algorithms aren’t much more efficient than
recursive function calls unless the overhead of the stack implementation
you use is small relative to the function call overhead. Given the large
increase in complexity and relatively minor performance differences, you
should implement recursive algorithms with recursive function calls
unless instructed otherwise. An example of a recursive algorithm imple-
mented without recursive function calls is given in the solution to the
“Preorder Traversal, No Recursion” problem in Chapter 4, “Trees and
Graphs.”

m A recursive algorithm can be implemented without recursive
function calls using a stack, but it's usually more trouble than it's worth.

In an interview, a working solution is of primary importance; an effi-
cient solution is secondary. Therefore, unless you’ve been told otherwise,
go with whatever type of solution comes to you first. If that should hap-
pen to be a recursive solution, you might want to mention the inefficien-
cies inherent in recursive solutions to your interviewer, so it’s clear that
you know about them. In the rare instance that you see a recursive and
an iterative solution of roughly equal complexity at about the same time,
you should probably mention them both to the interviewer and say
you're going to work out the iterative solution because it’s likely to be
more efficient.




106 Chapter 6

Problem: Binary Search

= [mplement a function to perform a binary search on a sorted array
of integers to find the index of a given integer. Use the prototype:

int BinarySearch(int* array, int lower, int upper, int target);

Comment on the efficiency of this search and compare it with
other search methods.

In a binary search, you compare the central element in your search
space (an array, in this case) with the item you're looking for. If it’s less
than what you're searching for you can eliminate the first half of the
search space; if it's more you can eliminate the second half of the search
space. In the third case, if the central element is equal to the search item,
you've found it and can stop there. Otherwise, you repeat the process on
the remaining portion of the search space. If not already familiar to you
from computer science courses, this algorithm may remind you of the
optimum strategy in the children’s number guessing game where one
child guesses numbers in a given range and a second responds “higher”
or “lower” to each incorrect guess.

Because a binary search can be described in terms of binary searches on
successively smaller portions of the search space, it lends itself to a recur-
sive implementation. Your function will need to be passed the array it is
searching, the limits within which it should search, and the element for
which it is searching. You can subtract the lower limit from the upper limit
to find the size of the search space, then divide this size by two and add it
to the lower limit to find the index of the central element. Next compare
this element to the search element. If they’re equal, return the index; if the
search element is smaller, the new upper limit becomes the central index —1;
if the search element is larger, the new lower limit is the central index + 1,
and you recurse until you match the element you're searching for.

Before you code, you should consider what error conditions you'll need
to handle. One way to think about this is to consider what assumptions
you're making about the data you are being given and then consider how
these assumptions might be violated. One assumption, explicitly stated in
the problem, is that only a sorted array can be binary searched; you'll
want to detect unsorted lists. You can do this by checking whether the
value at the upper limit is less than the value at the lower limit. If this
occurs, you should return an error code. Another way to handle this case
would be to call a sort routine and then restart the search, but that’s more
than you need to do in an interview. Another assumption implicit in a
search may be a little less obvious: The element you’re SeaIQI?ing for is




Recursion

107

assumed to exist in the array. If you don’t terminate the recursion until
you find the element, you'll recurse infinitely when the element is miss-
ing from the array. You can avoid this by returning an error code if the
upper and lower limits are equal and the element at that location is not
the element you're searching for. Finally, you assume that the lower limit
is less than or equal to the upper limit. For simplicity, you can just return
an error code in this case, although in a real program you’d probably
want to either define this as an illegal call and use an assert to check it (for
more efficient programs) or silently reverse the limits when they are out
of order (for easier programming).

Now you can translate these algorithms and error checks into code:

#define E_TARGET NOT IN ARRAY -1
#define E_ARRAY UNORDERED -2
#define E_LIMITS REVERSED -3

int BinarySearch(int* array, int lower, int upper, int target)

{

int center, range;

range = upper - lower;

if (range < 0) {
return E_LIMITS REVERSED;

} else if (range == 0 && array[lower] != target) {
return E_TARGET_NOT_ IN_ARRAY;

}

if (array([lowerl > arrayl[upper])
return E_ARRAY UNORDERED;

center = ((range)/2) + lower;

if (target == array[center]) {

return center;
} else if (target < arraylcenter]) {

return BinarySearch(array, lower, center - 1, target);
} else {

return BinarySearch(array, center + 1, upper, target);
}
}

Although this completes the given task, it is not as efficient as it could
be. As we discussed at the beginning of this chapter, recursive imple-
mentations are generally less efficient than equivalent iterative imple-
mentations.

If you analyze the recursion in the previous solution, you can see that

each recursive call serves only to change the search limits. There’snorea- ..




108 Chapter 6

son why you can’t change the limits on each iteration of a loop and avoid
the overhead of recursion. The function that follows is a more efficient,
iterative analog of the recursive binary search.

int IterBinarySearch(int* array, int lower, int upper, int target)

{

int center, range;

if (lower > upper)
return E_LIMITS_REVERSED;

while (1) {
range = upper - lower;
if (range == 0 && array[lower] != target)
return E_TARGET NOT IN ARRAY;

if (arrayllower] > array{upperl)
return E_ARRAY_ UNORDERED;

center = ((range)/2) + lower;

if (target == arrayl[center]) {
return center;

} else if (target < arraylcenter]) {
upper = center - 1;

} else {
lower = center + 1;

}

}

A binary search is O(log(n)) because half of the search is eliminated (in
a sense, searched) on each iteration. This is more efficient than a simple
search through all elements, which would be O(n). However, in order to
perform a binary search the array must be sorted, an operation that is
usually O(n log(n)).

Problem: Permutations of a String

= Implement a function that prints all possible orderings of the
characters in a string. In other words, print all permutations that
use all the characters from the original string. For instance, given
the string “hat” your function should print the strings “tha”,
“aht”, “tah”, “ath”, “hta”, and “hat”. Treat each character in the
input string as a distinct character, even if it is repeated. Given the
string “aaa”, your function should print “aaa” six times. You may
print the permutations in any order you choose. ..




Recursion

Manually permuting a string is a relatively intuitive process, but
describing an algorithm for the process can be difficult. In a sense, the
question here is like being asked to describe how you tie your shoes: You
know the answer, but you probably still have to go through the process a
few times to figure out what steps you're taking.

Try applying that method to this problem: Manually permute a short
string and try to reverse-engineer an algorithm out of the process. We'll
take the string “abcd” as an example. Because you're trying to construct
an algorithm from an intuitive process, you'll want to go through the per-
mutations in a systematic order. Exactly which systematic order you use
isn’t terribly important—different orders are likely to lead to different
algorithms, but as long as you're systematic about the process you should
be able to construct an algorithm. You'll want to choose a simple order
that will make it easy to identify any permutations that you might acci-
dentally skip.

You might consider listing all the permutations in alphabetical order.
This means the first group of permutations will all start with “a”. Within
this group, you'll first have the permutations with a second letter of “b”,
then “c¢”, and finally “d”. Continue in a like fashion for the other first
letters.

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

Before you continue, make sure you didn’t miss any permutations.
There are four possible letters that can be placed in the first position. For
each of these four possibilities, there are three remaining possible letters
for the second position. Thus there are 4 x 3 = 12 different possibilities for
the first two letters of the permutations. Once you’ve selected the first
two letters, two different letters remain available for the third position,
and the last remaining letter is put in the fourth position. So if you multi-
plydx3x2x1 you have a total of 24 different permutations; there are 24
permutations in the previous list, so nothing has been missed. This calcu-
lation can be expressed more succinctly as 4/—you may recall that n! is
the number of possible arrangements of n objects.

Now examine the list of permutations for patterns. The rightmost let-
ters vary faster than the leftmost letters. For each letter that you choose




110 Chapter 6

for the first (leftmost) position, you write out all the permutations begin-
ning with that letter before you change the first letter. Likewise, once
you've picked a letter for the second position, you write out all permuta-
tions beginning with this two-letter sequence before changing the letters
in either the first or second position. In other words, you can define the
permutation process as picking a letter for a given position and perform-
ing the permutation process starting at the next position to the right
before coming back to change the letter you just picked. This sounds like
the basis for a recursive definition of permutation. Try to rephrase it in
explicitly recursive terms: To find all permutations starting at position n,
successively place all allowable letters in position 7, and for each new let-
ter in position » find all permutations starting at position 7 + 1 (the recur-
sive case). When n is greater than the number of characters in the input
string, a permutation has been completed; print it and return to changing
letters at positions less than n (the base case).

You almost have an algorithm; you just need to define “all allowable
letters” a little more rigorously. Because each letter from the input string
can appear only once in each permutation, “all allowable letters” can’t be
defined as every letter in the input string. Think about how you did the
permutations manually. For the group of permutations beginning with
“b”, you never put a “b” anywhere but the first position because when
you selected letters for later positions, “b” had already been used. For the
group beginning “bc” you used only “a” and “d” in the third and fourth
positions because both “b” and “c” had already been used. So “all allow-
able letters” means all letters in the input string that haven’t already been
chosen for a position to the left of our current position (a position less
than n). Algorithmically, you could check each candidate letter for posi-
tion n against all the letters in positions less than n to see if it had been
used. You can eliminate these inefficient scans by maintaining an array of
boolean values corresponding to the positions of the letters in the input
string and using this array to mark letters as used or unused, as appro-
priate.

In outline form, this algorithm looks like:

If you're past the last position?

Separating the base case from the recursive case as we have done here is considered good style
and may make the code easier to understand, but it does not provide optimum performance.
The code can be significantly optimized by invoking the base case directly without a recursive
call if the next recursive call would invoke the base case. In this algorithm, that would involve
checking whether the letter just placed was the last letter—if so, one would print the permuta-
tion and make no recursive call; otherwise a recursive call would be made. This would eliminate
n! function calls, reducing the function call overhead by approximately a factor °f n (where n js




Recursion

Print the string
Return
Otherwise
For each letter in the input string
If it's marked as used, skip to the next letter
Else place the letter in the current position
Mark the letter as used
Permute remaining letters starting at current position + 1

Mark the letter as unused

Just for a change of pace, let’s try coding this in Perl:

sub Permute {
my ($inString) = e_;
# $in, Sout and Sused are references to arrays
my ($in, S$out, $used) = ([1, [1, [1);
@$in = split //, $inString; # One char in each element of $in
DoPermute ($in, S$out, Sused, 0);

}

sub DoPermute {
my ($in, S$out, S$used, S$recurslev) = @ ;
my ($i);

# Base case

if ($recursLev == @$in)
print @$out, "\n";
return;

# Recursive case
for ($1i = 0; $i < @$in; $i++) { # @$in gives array length

next if Sused->[$i]; # if used, skip to next letter
Sout->[SrecurslLev] = $in->[$i];# put this letter in output
Sused->[$1i] = 1; # mark this letter as used
DoPermute($in, $out, Sused, $recurslev + 1);

Sused->[%$1] = 0; # unmark this letter

the length of the input string). Short-circuiting the base case in this manner is referred to as
“arms length recursion” and is considered poor style, especially in academic circles. Whichever
way you choose to code the solution, it is worthwhile to mention the advantages of the alter-

' nate approach to your interviewer.




112 Chapter 6

Structurally, this function uses a wrapper function called Permute to
allocate three arrays and do some processing on the input string. Then it
calls the recursive portion, DoPermute, to actually do the permutation. If
you're not completely conversant with Perl syntax, the following few
reminders may be helpful. my is used to declare a local variable3 here.
Arguments to a subroutine are passed in the @_array. The second line of
Permute says that $in, $out, and $used are local variables that will be
references to arrays (references are like pointers). @ is the array derefer-
encing operator. In scalar context, like the conditional of an if, an array
evaluates to the number of elements in the array; in list context, like a
print statement, an array evaluates to the concatenated values of the ele-
ments in the array.

Of course, this algorithm can be just as easily implemented in C. You
may find it helpful to compare the C and Perl implementations:

int Permute( char instring(]) {

int length, i, *used;
char *out;

length = strlen(inString);
out = (char *) malloc(length+1);
if (lout)

return 0; /* Failed */

/* so printf doesn't run past the end of the buffer */
out [lengthl = '\o';
used = (int *) malloc(sizeof {(int) * length) ;
if (!lused)
return 0; /* Failed */

/* start with no letters used, SO zero array */
for (1 = 0; 1 < length; i++) {
used[i] = 0;

DoPermute (inString, out, used, length, 0);
free(out) ;

free (used) ;
return 1; /* Success! */

*Just to keep things interesting, Perl also has the keyword 1oca1, which makes a local copy of a
global variable. To keep it simple, just remember that my declares a local variable and 10ca1
shouldn’t be used without good reason.




Recursion 113
void DoPermute (char in[], char out[]l, int used[],
int length, int recursLev)
{
int 1i;
/* Base case */
if (recursLev == length) ({
printf ("%$s\n", out); /* print permutation */
return;
}
/* Recursive case */
for (i = 0; i < length; i++) {
if (used[il) /* if used, skip to next letter */
continue;
out [recursLev] = in[i]}; /* put current letter in output */
used[i] = 1; /* mark this letter as used */
DoPermute {in, out, used, length, recursLev + 1);
used(i] = 0; /* unmark this letter */

Problem: Combinations of a String

= Implement a function that prints all possible combinations of the
characters in a string. These combinations range in length from
one to the length of the string. Two combinations that differ only
in ordering of their characters are the same combination. In other
words, “12” and “31” are different combinations from the input
string “123”, but “21” is the same as “12”.

This is a companijon problem to finding the permutations of the charac-
ters in a string. If you haven’t yet worked through that problem, you may
wish to do so before you tackle this one.

Following the model of the solution to the permutation problem, try
working out an example by hand and see where that gets you. Because
you'll be trying to divine an algorithm from the example, you'll again
need to be systematic in your approach. You might try listing combina-
tions in order of length. We'll use “wxyz” as our sample input string.
Because the ordering of letters within each combination is arbitrary, we'll
keep them in the same order as they are in the input string to minimize
confusion.



114 Chapter 6

w WX WXy WXyZ
X wy WXz
y wz wyz
z Xy Xyz
Xz
yz

Some interesting patterns seem to be emerging, but there’s nothing
clear yet, certainly nothing that seems to suggest an algorithm. Listing
output in terms of the order of the input string (alphabetical order, for
this input string) turned out to be helpful in the permutation problem.
Try rearranging the combinations you generated and see if that’s useful
here.

w X y z
WX Xy yz

WXy Xyz

wXyz XZ

WXZ

wy
wyz
wz

This looks a little more productive. There is a column for each letter in
the input string. The first combination in each column is a single letter
from the input string. The remainder of each column’s combinations con-
sist of that letter prepended to each of the combinations in the columns to
the right. Take, for example, the “x” column. This column has the single
letter combination “x”. The columns to the right of it have the combina-
tions “y”, “yz”, and “z”, so if you prepend ”x” to each of these combina-
tions you find the remaining combinations in the “x” column: ”xy”,
“xyz”, and “xz”. You could use this rule to generate all of the combina-
tions, starting with just “z” in the rightmost column and working your
way to the left, each time writing a single letter from the input string at
the top of the column and then completing the column with that letter
prepended to each of the combinations in columns to the right. This is a
recursive method for generating the combinations. It is space inefficient
because it requires storage of all previously generated combinations, but
it indicates that this problem can be solved recursively. See if you can gain




Recursion 115

some insight on a more efficient recursive algorithm by examining the
combinations you’ve written a little more closely.

Look at which letters appear in which positions. All four letters appear
in the first position, but “w” never appears in the second position. Only
“y* and “z” appear in the third position, and “z” is in the fourth position
in the only combination that has a fourth position (“wxyz"). So, a poten-
tial algorithm might involve iterating through all allowable letters at each
position: w—z in the first position, x-z in the second position, and so on.
Check this idea against the example to see if it would work: It seems to
successfully generate all the combinations in the first column. However,
when you select “x” for the first position this candidate algorithm would
start with “x” in the second position, generating an illegal combination of
“xx”. Apparently the algorithm needs some refinement.

In order to generate the correct combination “xy”, you really need to
begin with “y”, not “x” in the second position. When you select “y” for the
first position (third column) you need to start with “z” because “yy” is ille-
gal and “yx” and “yw” have already been generated as “xy” and “wy”.
This suggests that in each output position you need to begin iterating with
the letter in the input string following the letter selected for the preceding
position in the output string. We'll call this letter our input start letter.

It may be helpful to summarize this a little more formally. You need to
track the output position as well as the input start position. Begin with
the first position as the output position, and the first character of the
input as the input start position. For a given position, sequentially select
all letters from the input start position to the last letter in the input string.
For each letter you select, print the combination and then generate all
other combinations beginning with this sequence by recursively calling
the generating function with the input start position set to the next letter
after the one you’ve just selected and the output position set to the next
position. You should check this idea against the example to make sure it
works. It does—no more problems in the second column. Before you
code, it may be helpful to outline the algorithm just to make sure you
have it.4

For each letter from input start position to end of input string

Select the letter into the current position in output string
Print letters in output string

“For comparison, we've chosen the performance side of the arm's-length recursion style/ Pel'fOI"
mance trade-off discussed in the permutation problem. The performance and style differences

between the two possible approaches are not as dramatic for the combination algorithm as they
were for the permutation algorithm.




116 Chapter6

If the current letter isn’t the last in the input string

Generate remaining combinations starting at next position with
iteration starting at next letter beyond the letter just selected

After all that hard work, the algorithm looks pretty simple! You're
ready to code it. If you choose C, you’ll need a little wrapper function to
allocate an appropriately sized output buffer for writing combinations.
Because you'll be using this buffer to print strings of many different
lengths, you’ll have to remember to tack a NUL character ( '\0' ) to the
end of each string to keep printf from printing whatever garbage is in
the rest of the buffer.

int Combine (char inStringl[])
{
int length;
char *out;
length = strlen(inString);
/* allocate output buffer */
out = (char *) malloc(length + 1);
if (!out)
return 0; /* failed */

/* enter recursive portion */
DoCombine (inString, out, length, 0, 0);
free(out) ;

return 1; /* success! */

void DoCombine (char in[], char out[], int length,
int recursLev, int start)

{

int i;

for (i = start; i < length; i++)
out [recursLev]l = infi]; /* select current letter */
out [recursLev + 1] = '\0'; /* tack on NUL for printf */
printf ("$s\n", out);
if (i < length - 1) /* recurse if more letters in input */

DoCombine (in, out, length, recursLev + 1, i + 1);

}

This solution would be sufficient in most interviews. Nevertheless,
you can make a rather minor optimization to boCombine that eliminates
the if statement. Given that this is a recursive function, the perform-
ance increase is probably negligible compared to the function call
overhead, but you might want to see if you can figure it out just for
practice. R




Recursion 117

For comparison, we'll show a Perl implementation, just as we did for
permutations. Instead of the array-based approach we used for per-
mutations, we’ll do it in terms of strings. We'll also employ a somewhat
more Perl-centric strategy of passing only the remaining portion of the
input string to each recursive call rather than a start offset for the entire
input string. Finally, we’ll implement the little optimization suggested
previously.

sub Combine {
my ($in, $comb) = @_; # Get arguments
my (Sletter, $i); # declare local variables
for ($i = 0; $i < length($in) - 1; $i++) {
Sletter = substr($in, $i, 1); # Select current letter
print Scomb, $letter, "\n";
Combine (substr($in, $i + 1), Scomb . Sletter);

}

print Scomb, substr($in, length($in) - 1, 1), "\n";

}

Notice that the if statement is eliminated by removing the final itera-
tion from the loop and moving the code that would have executed during
that iteration past the end of the loop. The general case of this optimiza-
tion is referred to as loop partitioning, and if statements that can be
removed by loop partitioning are called loop index dependent conditionals.
Again, this optimization doesn’t make much difference here, but it can be
important inside nested loops.

Problem: Telephone Words

m People often give out their telephone number as a word represent-
ing the seven-digit number. For example, if my telephone number
were 866-2665, I could tell people my number was “TOOCOOL,”
instead of the hard-to-remember seven-digit number. Note that
many other possibilities (most of which are nonsensical) can rep-
resent 866-2665. You can see how letters correspond to numbers on
a telephone keypad in Figure 6.2.

Write a function that takes a seven-digit telephone number and
prints out all of the possible “words” or combinations of letters
that can represent the given number. Because the 0 and 1 keys have
no letters on them, you should change only the digits 2-9 to letters.

i : Use the function prototype:




118 Chapter 6

Figure 6.2 Telephone keypad.

void PrintTelephoneWords (int phoneNumber(]) ;

where phoneNumber is an array of seven integers with each ele-
ment being one digit in the number. You may assume that only
valid phone numbers will be passed to your function.

You may use the function:

char GetCharKey(int telephoneKey, int place)

which takes a telephone key (0-9) and a place of either 1, 2, 3 and
returns the character corresponding to the letter in that position on
the specified key. For example, GetCharKey(3, 2) will return ‘E’
because the telephone key 3 has the letters “DEF” on it and “E’ is
the second letter.

It’s worthwhile to define some terms for this problem. A telephone num-
ber is made up of digits. Three letters correspond to each digit (except for 0
and 1, but when 0 and 1 are used in the context of creating a word, you can
call them letters). The lowest letter, middle letter, and highest letter will be
called the digit’s low value, middle value, and high value, respectively. You
will be creating words, or strings of letters, to represent the given number.

First, impress the interviewer with your math skills by determining
how many words can correspond to a seven-digit number. This requires
combinatorial mathematics, but if you don’t remember this type of math,
don’t panic. First, try a one-digit phone number. Clearly, this would have
three words. Now, try a two-digit phone number, say 56. There are three
possibilities for the first letter, and for each of these there are three possi-
bilities for the second letter. This yields a total of nine words that can cor-
respond to this number. It appears that each additional digit increases the




Recursion

number of words by a factor of 3. Thus, for 7 digits, you have 37 words
and for a phone number of length 71, you have 3" words. Because 0 and 1
have no corresponding letters, a phone number with 0s or 1s in it would
have fewer words, but 37 is the upper bound on the number of words for
a seven-digit number.

Now you need to figure out an algorithm for printing these words. Try
writing out some words representing one of the author’s old college
phone numbers, 497-1927, as an example. The most natural manner to list
the words is alphabetical order. This way, you always know which word
comes next and you'll be less likely to miss words. You know that there
are of the order of 3’ words that can represent this number so you won’t
have time to write them all out. Try writing just the beginning and the
end of the alphabetical sequence. You will probably want to start with the
word that uses the low letter for each digit of the phone number. This will
guarantee that your first word is the first word in alphabetical order.
Thus, the first word for 497-1927 would be ‘G’ for 4 since 4 has “GHI” on
it, ‘W’ for 9 which has “WXY” on it, ‘P’ for 7 which has “PRS” on it, and
so on, resulting in “GWP1WAP”.

As you continue to write down words, you'll ultimately get a list that
looks like:

GWP1IWAP
GWPIWAR
GWP1WAS
GWP1WBP
GWP1WBR

IYS1YCR
IYS1YCS

It was easy to create this list because the algorithm for generating the
words is relatively intuitive. Formalizing this algorithm is more challeng-
ing. A good place to start is by examining the process of going from one
word to the next word in alphabetical order.

Because you know the first word in alphabetical order, determining
how to get to the next word at any point will give you an algorithm for
writing all the words. One important part of the process of going from
one word to the next seems to be that the last letter always changes. It
continually cycles through a pattern of P-R-S. Whenever the last letter

goes from S back to P, it causes the next to last letter to change. Try inves-




120 Chapter 6

tigating this a little more and see if you can come up with specific rules.
Again, it’s probably best to try an example. You may have to write down
more words than in the example list to see a pattern (a three-digit phone
number should be sufficient, or the previous list will work if it’s
expanded a bit). It looks as if the following is always true: Whenever a let-
ter changes, its right neighbor goes through all of its values before the
original letter changes again. Conversely, whenever a letter resets to its
low value, its left neighbor increases to the next value.

From these observations, there are probably two reasonable paths to
follow as you search for the solution to this problem. You can start with
the first letter and have a letter affect its right neighbor, or you can start
with the last letter and have a letter affect its left neighbor. Both of these
approaches seem reasonable, but you’ll have to choose one. For now, try
the former and see where that gets you.

You should examine exactly what you're trying to do at this point.
You're working with the observation that whenever a letter changes, it
causes its right neighbor to cycle through all of its values before it will
change again. You're now using this observation to determine how to get
from one word to the next word in alphabetical order. It may help to for-
malize this observation: Changing the letter in position i causes the letter
in position i + 1 to cycle through its values. When an algorithm can be
written in terms of how elements i and 7 + 1 interact with each other, it
often indicates recursion, so try to figure out a recursive algorithm.

You have already discovered most of the algorithm. You know how
each letter affects the next; you just need to figure out how to start the
process and determine the base case. Looking again at the list to try to fig-
ure out the start condition, you'll see that the first letter cycles only once.
So, if you start by cycling the first letter, this will cause multiple cycles of
the second letter, which will cause multiple cycles of the third letter—
exactly as desired. After you change the last letter, you can’t cycle any-
thing else so this is a good base case to end the recursion. When the base
case occurs, you should also print out the word because you’ve just gen-
erated the next word in alphabetical order. The one special case you have
to be aware of occurs if there is a 0 or 1 in the given telephone number.
You don’t want to print out any word three times, so you should check
for this case and cycle immediately if you encounter it.

In list form, the steps look like this:

If the current digit is past the last digit
Print the word because you’re at the end
Else



Recursion 121

For each of the three digits that can represent the current digit, going
from low to high

Have the letter represent the current digit
Move to next digit and recurse
If the current digit is a 0 or a 1, return

The code is as follows:

#define PHONE_NUMBER_LENGTH 7

void PrintTelephoneWords (int phoneNum([])

{

char result [PHONE NUMBER_LENGTH + 1};

/* tack on the NUL character at the end */
result[PHONE_NUMBER_LENGTH] = '"\0';

DoPrintTelephoneWords (phoneNum, 0, result);

}

void DoPrintTelephoneWords (int phoneNum[], int curDigit,
char result[])

int i;

if (curDigit == PHONE_NUMBER_LENGTH) {
printf ("$s\n", result);
return;

for (i = 1; i <= 3; i++) {

result [curDigit] = GetCharKey (phoneNum{curDigit], 1i);
DoPrintTelephoneWords (phoneNum, curDigit + 1, result);
if (phoneNum[curDigit] == 0 ||

phoneNum [curDigit] == 1) return;

}

What is the running time of this algorithm? It can be no less than 03"
because there are 3" solutions, so any correct solution must be at least
O(3"). Getting each new word requires only constant time operations so
the running time is indeed O(3").

= Reimplement PrintTelephoneWords without using recursion.
The recursive algorithm doesn’t seem to be very helpful in this situa-

tion. Recursion was inherent in the way that you wrote out the steps of
M e o -




122 Chapter 6

the algorithm. You could always try emulating recursion using a stack-
based data structure, but there may be a better way involving a different
algorithm. In the recursive solution, you solved the problem from left to
right. You also made an observation that suggested the existence of
another algorithm going from right to left. The observation was that
whenever a letter changes from its high value to its low value, its left
neighbor is incremented. Explore this observation and see if you can find
a non-recursive solution to the problem.

Again, you're trying to figure out how to determine the next word in
alphabetical order. Because you're working from right to left, you should
look for something that always happens on the right side of a word as it
changes to the next word in alphabetical order. Looking back at the origi-
nal observations, you noticed that the last letter always changes. This
seems to indicate that a good way to start would be incrementing the last
letter. If the last letter is at its high value and you increment it, you will
reset the last letter to its low value and increment the second-to-last letter.
But suppose the second-to-last number is already at its high value. Try
looking at the list to figure out what you need to do. From the list, it
appears that you would then reset the second-to-last number to its low
value and increment the third-to-last number. You will continue carrying
your increment like this until you don’t have to reset a letter to its low
value.

This sounds like the algorithm you want, but you still have to work out
how to start it and how to know when you're finished. You can start by
manually creating the first string as you did when writing out the list.
Now you need to determine how to end. Look at the last string and figure
out what happens if you try to increment it. Every letter resets to its low
value. You can check to see if every letter is at its low value, but this seems
inefficient. The first letter resets only once, when you’ve printed out all of
the words. You can use this to signal that you're done printing out all of
the words. Again, you have to consider the cases where thereisa O or a 1.
Because 0 and 1 effectively can’t be incremented (they always stay as 0 and
1), you should always treat a 0 or 1 as if it’s at its highest letter value and
increment its left neighbor. In outline form, the steps are as follows:

Create the first word character by character
Loop infinitely:

Print out the word

Increment the last letter and carry the change

If the first letter has reset, you’re done
) ) ) —




Recursion

123

Here is the solution based on this sort of algorithm.®

#define PHONE_NUMBER_LENGTH 7

void PrintTelephoneWords (int phoneNum[})

{

char result[PHONE_NUMBER_LENGTH + 11 ;
int i;

/* Initialize the result (in our example,
* put GWP1WAR in result).
*/
for (i = 0; i < PHONE_ NUMBER_LENGTH; 144)
result [i] = GetCharKey(phoneNum[i], 1};

/* Tack on the NUL character at the end. */
result[PHONE_NUMBER_LENGTH] = '"\0';

/* Main loop beging */
while (1) {
printf ("$s\n", result);

/* Start at the end and try to increment from right
* to left.
*/
for (i = PHONE_NUMBER_LENGTH - 1; i >= -1; i==){
/* You're done because you
* tried to carry the leftmost digit.
*/

if (i == -1) return;
/* Otherwise, we're not done and must continue. */

/* You want to start with this condition so that you can
* deal with the special cases, 0 and 1, right away.

*/

if (GetCharKey (phoneNum[il, 3) == result[i] ||
phoneNum([i] == 0 || phoneNum([i]l == 1) {
result[i] = GetCharKey(phoneNum([i], 1);
/* No break, so loop continues to next digit */

} else if (GetCharKey(phoneNum[i], 1) == result [i}) {
result [1] = GetCharKey (phoneNum([i], 2);
break;

} else if (GetCharKey(phoneNum{i], 2) == result[il]){
result[i] = GetCharKey(phoneNum([i]l, 3);
break;

5You could cut down on the calls to GetCharKey by storing each letter’s three values in Yari-
ables rather than making repeated calls to see whether a value is low, middle, or high. This
would make the code a little more difficult, and this sort of optimization is probably unneces-
sary in the context of this solution.

e e s



124 Chapter 6

}
}

What's the running time on this algorithm?

Again, there must be at least 3" solutions, so the algorithm can be no bet-
ter than O(3") if it is correct. There is slight constant overhead in finding
each word, but you can ignore it. Therefore, this is also an O(3") solution.




Other Programming Tog

A number of interview topics are less common than those we’ve seen so
far. These topics do appear frequently enough in interviews, though, to
merit discussion. Because the topics in this chapter are so disparate, this
introduction has a separate section for each topic.

Graphics

A computer screen consists of pixels arranged in a Cartesian coordinate
system. This is commonly called a raster pixel display. Computer graph-
ics algorithms change the colors of sets of pixels. Often, the algorithm for
generating a raster pixel image is based on a geometric equation. Because
a computer screen has a finite number of pixels, translating from a geo-
metric equation to a pixel display can be quite complex. Geometric equa-
tions usually have real-number (floating-point) solutions, but pixels are
found only at fixed, regularly spaced locations. Therefore, every point
that is calculated must be adjusted to pixel coordinates. This requires
some kind of rounding, but rounding to the nearest pixel coordinate is
not always the correct approach. It is often necessary to round numbers in
’ N i . . “M‘ i e




126 Chapter 7

unusual ways or add error-correcting terms. If rounding is done care-
lessly, it often leads to gaps in what should be continuous lines. Take care
to check your graphics algorithms for distortion or gaps due to poor
rounding or error correction.

Consider something as simple as drawing a line segment, for example.
Suppose you were trying to implement a function that takes two end-
points and draws a line between them. After doing a little algebra, you
could easily get an equation in the form of y = mx + b. Then, you could
calculate y for a range of x values and draw the points making up the line.
This function seems trivial.

The devil, though, is in the details of this problem. First, you must
account for vertical lines. In this case, m is infinity, so the simple proce-
dure can’t draw the line. Similarly, imagine that the line is not vertical,
but close to vertical. For example, imagine that the horizontal distance
spanned by the line is 2 pixels, but the vertical distance is 20 pixels. In this
case, only 2 pixels would be drawn—not much of a line. To correct for this
problem, you would have to rework your equation to x = (y — b) /m. Then,
if the line is closer to vertical you vary y and use this equation; if it is
closer to horizontal, you use the original procedure.

Even this won’t solve all your problems. Suppose you need to draw a
line with a slope of 1, for example, y = x. In this case, using either proce-
dure, you would draw the pixels (0, 0), (1, 1), (2, 2) . . . This is mathemati-
cally correct, but the line looks too thin on the screen because the pixels
are much more spread out than in other lines. A diagonal line of length
100 has fewer pixels in it than a horizontal line of length 80. An ideal line-
drawing algorithm would have some mechanism to guarantee that all
lines have nearly equal pixel density. Another problem has to do with
rounding. If you calculate a point at (.99, .99) and use a type cast to con-
vert this to integers, the floating-point values will be truncated and the
pixel will be drawn at (0, 0). You need to explicitly round the values so
that the point is drawn at (1, 1).

If graphics problems seem like never-ending series of special cases, you
understand the issues involved. As a concluding thought on this issue,
you should note that even if you were to work out all the problems with
the line-drawing algorithm we’ve described, it still wouldn’t be very
good. Although this algorithm effectively illustrates the problems
encountered in graphics programming, its reliance on floating-point
calculations makes it very slow. High-performance algorithms that use
only integer math are far more complicated than what we’ve discussed
here.



Other Programming Topics

127

I computer graphics involves drawing with pixels. Always check
for rounding errors, gaps, and special cases.

Bit Operators

Many computer languages have facilities to allow programmers access to
the individual bits of a variable. Bit operators may appear more fre-
quently in interviews than in day-to-day programming, so they merit a
review.

Bit operators vary across languages, but bitwise operations are most
often seen in C because C is the lowest-level programming language in
common use. Therefore, this review will concentrate on the bit operators
in C. These operators are identical to those of C++ and almost identical to
Java’s bit operators.!

To work with bit operators, you have to start thinking on the levels of
bits. Numbers are usually internally represented in a computer in binary
two’s complement notation. If you're already familiar with binary numbers,
you almost understand binary two’s complement notation. Binary two’s
complement notation is almost the same as binary notation. In fact, it’s
identical for positive numbers. The only difference comes with negative
numbers. An integer usually consists of 32 bits, but to avoid excessive
length, we’ll look at some examples with 8-bit integers. In binary two’s
complement notation, a positive integer like 13 is 00001101, exactly the
same as in regular binary notation. Negative numbers are a little trickier.
Two’s complement notation makes a number negative by applying the
rule “Flip each bit and add 1” to the number’s positive binary representa-
tion. For example, to get the number -1, you start with 1, which is
00000001 in binary. Flipping each bit results in 11111110. Adding 1
gives you 11111111, which is the two’s complement notation for 1. If
you're not familiar with this, it may seem sort of weird, but it has lots of
advantages, especially when subtracting numbers. Notice that the first
bit is a sign bit: If it is 0, the number is positive; if it is 1, the number is
negative.

Bit operators operate directly on the bits of variables. One common bit
operator is the unary operator ~, called NOT. This operator negates or
reverses all the bits that it operates on. Thus, every 1 becomes a 0, and
The only difference is that in Java, >> always sign extends and there is an additional operator,

>>>, that shifts right with 0 extension. In C, the behavior of >> depends on whether the type is
signed.



128 Chapter?7

every 0 becomes a 1. For example, if ~ is applied to 00001101 the result is
11110010.

Three other bitwise operators are | (OR), & (AND), and * (XOR). They
are all binary operators applied in a bitwise fashion. This means that i h
bit of one number is combined with the i " bit of the other number to pro-
duce the ith bit of the resulting value. The rules for these operators are as
follows:

& If both bits are 1, the result is a 1. Otherwise, the result is 0. For
example:
01100110

& 11110100
01100100

|: If either bit is a 1, the result is 1. If both bits are 0, the result is 0. For
example:
01100110

11110100
11110110
. If the bits are the same, the result is 0. If the bits are different, the
resultis 1.
01100110

11110100
10010010

The two remaining bit operators are >> (SHIFT RIGHT) and << (SHIFT
LEFT). They shift the value the indicated number of positions to the left or
the right, respectively. The new spaces created are always filled with 0’s
when using the << operator. The >> operator also fills with 0’s when oper-
ating on an unsigned value. When operating on a signed value, the >>
operator sign extends. This means that if the number is positive, the new
spaces are filled with 0’s. If the number is negative, the new spaces are
filled with 1’s. For example: 01100110 << 5 resultsin 11000000. Simi-
larly, 01100110 >> 5 gives 00000011. Yet, a negative number like
10100110 >> 5yields 11111101 because the operator sign extends.

The shift operators allow you to multiply and divide by powers of 2
very quickly. Shifting to the right one bit is equivalent to dividing by 2
and shifting to the left one bit is equivalent to multiplying by 2. The
equivalence of shifting and multiplying or dividing by a power of the
base also occurs in the more familiar base 10 number system. Consider
the number 17. 17 << 1 results in the value 170, which is exactly the same
as multiplying 17 by 10. Similarly, 17 >> 1 gives 1, which is the same as
integer dividing 17 by 10.

o



Other Programming Topics 129

Structured Query Language (SQL)

SQL is the lingua franca of relational database manipulation. It provides
mechanisms for most kinds of database manipulations. Understandably,
SQL is a big topic, and lots of books are devoted just to learning SQL.
Nevertheless, the basic tasks of storing and retrieving data are relatively
simple with SQL.

If you don’t mention that you know SQL on your resume or during the
interview, it’s highly unlikely that you'll be asked any SQL questions.
Therefore, this introduction will not try to teach you SQL. Instead, it will
review the high points of SQL, placing emphasis on common interview
topics and favoring example over formal syntax definition.

m If you don’t indicate that you know SQL, you probably won't be
asked anything about it.

Most interview database questions involve writing queries for a data-
base with a given schema, so you won’t usually need to design a schema
yourself. For this introduction, we will work with the following schema:

Player (name CHAR(20), number INT(4)});

Stats (number INT (4), totalPoints INT(4), year CHAR(20))};

Some sample data for Player are shown in Table 7.1, and a sample
Stats table is shown in Table 7.2.

One fundamental SQL statement is INSERT, which is used to add val-
ues to a table. For example, to insert a player named Bill Henry with the
number 50 into the Player table, you would use the statement:

INSERT INTO Player VALUES('Bill Henry', 50);

SELECT is the SQL statement most commonly seen in interviews. A
SELECT statement retrieves data from a table. For example, the statement

Table 7.1 Player Sample Data

NAME NUMBER

Larry Smith 23
David Gonzalez 12
George Rogers 7
Mike Lee 14

Rajiv Williams 55




130 Chapter?7

Table 7.2 Stats Sample Data

NUMBER TOTALPOINTS YEAR
7 59 Freshman
55 90 Senior
22 15 Senior
86 221 Junior
36 84 ‘ Sophomore

SELECT * FROM Player;

will return all of the values in the table Player:

B +
| name | number |
P m e oo +
| Larry Smith | 23 |
| David Gonzalez | 12 |
| George Rogers | 7 |
| Mike Lee | 14 |
| Rajiv Williams | 55 |
| Bill Henry ! 50 |
R it +

You can specify which columns you want to return like this:

SELECT name FROM Player;

returns:

tommm o mmmmmmm - +
| name |
B i +

| Larry Smith |
| David Gonzalez |
| George Rogers |
| Mike Lee |
| Rajiv Williams |
| Bill Henry |

You may want to be more restrictive about which values you return.
For example, if you want to return only the names of the players with
numbers less than 10 or greater than 40, you would use the following
statement:

SELECT name FROM Player WHERE number < 10 OR number > 40;




:
3
;
3

-
1

Other Programming Topics

It returns:
e +
| name |
tommmmmmsmemeaeeo +

| George Rogers |
| Rajiv Williams |
| Bill Henry |

Often, you will want to use data from two tables. For example, you
may want to print out the names of all players along with the number of
points that each player has scored. To do this, you will have to join the
two tables on the number field. The number field is called a common key
because it represents the same unique value in both tables. The query is:

SELECT name, totalPoints FROM Player, Stats WHERE
Player.number = Stats.number;

It returns:
T +
| name | totalPoints |
o +
| George Rogers | 59 |
| Rajiv Williams | 90 |
T T +

The aggregates, MAX, MIN, SUM, and AVG, are another commonly used SQL
feature. These aggregates allow you to get the maximum, minimum, sum,
and average, respectively, for a particular column. For example, you may
want print out the average number of points each player has scored. To
do this, you would use the query:

SELECT AVG(totalPoints) FROM Stats;

It yields:
Fommm e +
| AVG(totalPoints) |
R +
| 93.8000 |
L R +

Other times, you may want to use the aggregates over a subset of the
data. For example, you may want to print out the year along with the
average number of points that each year’s players have scored. You will
need to use the GROUP BY clause to do this, as in the following query:

SELECT year, AVG(totalPoints) FROM Stats GROUP BY year;




132 Chapter 7

It gives this result:

i iy +
| year | AVG(totalPoints) |
oo +
| Freshman | 59.0000 |
| Junior | 221.0000 |
| senior | 52.5000 |
| Sophomore | 84.0000 |
R i +

Most interview questions focus on using these sorts of insert and select
statements. You're less likely to encounter SQL questions having to do
with other features like UPDATE statements, DELETE statements, permis-
sions, security, database design, concurrency, or optimization.

Concurrency

Concurrency is another topic that you will probably be asked about only
if you indicate that you have experience. It is also a large and difficult
topic, so we will just hit the major points of concurrency and provide a
quick brush-up appropriate for someone familiar with the topic.

m- If you don’t indicate that you know about concurrency, you
probably won't be asked about it.

Concurrency is a useful technology because it allows multiple threads
of control to share processor resources and variables. For example, sup-
pose that a computer is trying to accomplish two tasks. Task A involves
waiting for user input while Task B is very processor intensive and
involves no user input. If the computer executes the tasks serially, mean-
ing one task and then the other, the processor’s time is wasted in Task A
while the computer waits for input. Threads allow the computer to use
the waiting time in Task A to execute Task B. Thus, threaded tasks share
computer resources more efficiently than serially executing tasks.

Consider the following example of a banking system to illustrate this
concept. The system will consist of a program running on a single central
computer, controlling multiple teller consoles at multiple branches. Each
console will have its own thread, so the tellers can use their consoles
simultaneously and easily share the bank’s account data.

Many problems can result from poor thread control in this scenario. For
example, imagine that the bank teller program has the following function
that deducts money from a user’s account whose account balance is in a
global variable, userBalance.




Other Programming Topics

133

int Deduct (double amount)

{

double newBalance;
if (amount < userBalance) {
return 0; /* Insufficient funds */
} else {
newBalance = userBalance - amount;
userBalance = newBalance;
return 1;

}

Suppose a husband and wife, Ron and Sue, know that this is a function
that their bank’s computer system uses. Here is one possible scenario that
they could exploit. Initially, Ron and Sue have $500 in their bank account.
Ron and Sue go to different bank branches and each withdraws $100. Ron
goes up to a teller and indicates that he wants to withdraw $100. The
teller deducts $100 from the couple’s account, but the thread gets
switched out after executing this line:

newBalance = userBalance - amount;

Processor control then switches to Sue’s teller, who is also deducting
$100. When her teller deducts $100, the account balance is still $500
because the variable, userBalance, has not been updated. Sue’s thread
executes until completing this function and updates that value of user-
Balance to $400. Then, control switches back to Ron’s transaction. Ron’s
thread has the value $400 in newBalance. So, it simply assigns this value
to userBalance and returns. Thus, Ron and Sue have deducted $200 total
from their account, but their balance still indicates $400, or a net $100
withdrawal. This is a great feature for Ron and Sue, but a big problem for
the bank.

To get around this problem, you have to introduce the ability to protect
access to sections of code that use shared resources. The most common
way to do this in C is to use a thread package that presents a semaphore-
based APL. Most of these packages have three main methods associated
with them. They are a function that tells the thread to wait on a sema-
phore, usually called wait, a function that signals the semaphore, often
called signal, and a function that creates a new semaphore, often called
newSemaphore.

The newSemapore function must initialize a semaphore to a given
value. This value indicates how many threads to allow through the sema-
phore initially.

When a thread calls wait on a semaphore, it sleeps until the semaphore
becomes greater than 0. Once the value is greater than 0, a thread waiting




134 Chapter 7

at the semaphore will decrement the semaphore and enter the protected
section of code.

The signal function is the opposite of the wait function. When a
thread signals a semaphore, the semaphore is incremented. Signaling a
semaphore allows another waiting thread to pass through the semaphore.

In this banking semaphore example, you’ll want to use a binary sema-
phore (a semaphore with an initial value of 1) because you want only one
thread at a time to be able to access the global variable userBalance.
Using semaphores makes the function look like this:

static Semaphore balanceLock;

void init ()

{
}

balanceLock = newSemaphore (1) ;

int Deduct (double amount)

{

double newBalance;
wait (balanceLock) ;
if (amount < userBalance) {
signal (balanceLock) ;
return 0; /* Insufficient funds */
} else {
newBalance = userBalance - amount;
userBalance = newBalance;
signal (balancelock) ;
return 1;

}

Another major problem common in thread programming is deadlock.
Deadlock occurs when all threads are waiting on a semaphore and no
thread can run. For example, if the balanceLock semaphore were incor-
rectly initialized to 0 instead of 1, there would be deadlock because all
threads would be waiting on the semaphore and none would be able to
signal it.

Other languages implement concurrency differently. Java uses the syn-
chronized keyword. Usually, this keyword is added to the method defin-
ition. This ensures that any thread that calls this method will run to
completion through the method before any other thread enters a synchro-
nized method on the object (if it’s an instance method) or class (if it’s a
class method). Essentially, using synchronized puts a binary lock on the
object or class. There are times in Java when you may want a thread to
wait for a certain condition to become true. In these cases, you use the




Other Programming Topics

wait method. This method tells the thread to sleep and wake up at a
future time. At the appropriate time, you can use either the notify or
notifyAll methods to wake sleeping threads.

Problem: Eighth of a Circle

= Write a function that draws the upper eighth of a circle centered at
(0, 0) with a given radius, where the upper eighth is defined as the
portion starting at 12 and going to 1:30 on a clock face. Use the fol-
lowing prototype:

void DrawEighthOfCircle (int radius);

The coordinate system and an example of what you are to draw
are shown in Figure 7.1. You will use a function with the follow-
ing prototype to draw pixels:

void SetPixel (int xCoord, int yCoord);

This problem is not as contrived as it seems. If you were trying to imple-
ment a full-circle drawing routine, you would want to do as little calcula-
tion as possible to maintain optimum performance. Given the pixels for
one-eighth of a circle, you can easily determine the pixels for the remain-
der of the circle from symmetry.? This problem is an example of a scan con-
version, or converting a geometric drawing to a pixel-based raster image.

T

Figure 7.1  Output of DrawEighthOfCircle.

2If a point (x, ) is on a circle, so are the points (—x, y), (x, ), (-x, -¥), ¥, x), (~y, x), (y, —x),
(—y, —x).




136 Chapter7

You will need an equation for a circle before you can calculate any-
thing. The common mathematical function that produces a circle is this:

R4yt =r

The definition is nice because it contains x’s, y’s, and r’s, just like your
problem and your coordinate system. You have to figure out how to
determine pairs of coordinates (x, y) on the circle using the equation, X+
y2 = 12 The easiest way to find a pair of coordinates is to set a value for
one and then calculate the other. It's more difficult to set y and calculate x
because after the scan conversion there will be several x values for certain
y values. Therefore, you should set x and calculate y. Doing some algebra,
you can calculate y with the equation:

y =i\/r2 —x2

In this problem you are dealing with only positive values of y, so you
can ignore the negative root. This gives:

y=x/r2—x2

For example, given an x coordinate of 3 and a radius of 5, y = V5?32 =4.
You now know how to calculate y, given x. Next you need to determine
the range of x values. x clearly starts at 0, but where does it end? Look
again at the picture, and try to figure out how you visually know that you
are at the end of the one-eighth of the circle. In visual terms, this happens
when you are farther out then you are up. In mathematical terms, this
means that the x value becomes greater than the y value. Thus, you can
use the x range from 0 until x > y. If you put these pieces together, you
have an algorithm for drawing a circle. In outline form, it is as follows:

Start withx=0and y =r.

While (y > x)
Determine the y coordinate using the equation: y = + r-x2
Set the pixel (x, y)
Increment x

This algorithm looks correct, but there is a subtle bug in it. The problem
arises from treating the y coordinate as an integer, when often y will be a

decimal value. For example, if y had the value 9.99, setPixel would
[ S __@..J




Other Programming Topics

137

truncate it to 9, rather than rounding to the y pixel of 10 as you probably
want. One way to solve this problem is to round all values to the nearest
whole integer by adding 0.5 to the y value before calling setpixel.

This change results in a much better-looking circle. The code for this
algorithm is as follows:

void DrawEighthOfCircle (int radius)

{

int x, vy;

x = 0;

y = radius;

while (y <= x) {
y = sgrt((radius * radius) - (x * x)) + 0.5;
SetPixel (x, y);
X++;

}

What's the efficiency of this algorithm? Its running time is O(n) where n
is the number of pixels that you need to set. This is the best possible run-
ning time because any algorithm would have to call setpixel at least n
times to draw the circle correctly. The function also uses the sqrt function
and multiplies during each iteration of the while loop. The sqrt function
and the multiplications are likely to be slow operations. Therefore, this
function probably isn’t practical for most graphical applications where
speed is critical. There are faster circle-drawing algorithms that don’t
make repeated calls to slow functions like sqrt or have repeated multipli-
cations, but you wouldn’t be expected to implement them in an interview.

Problem: Rectangle Overlap

= You are given two rectangles, each defined by an upper left (UL)
corner and a lower right (LR) corner. Both rectangles’ edges will
always be parallel to the x or y axis as shown in Figure 7.2. Write a
function that determines whether the two rectangles overlap. The
function should return 1 if the rectangles overlap and 0 if they do
not. For convenience, you may use the following structs:

struct point {
int x;
int y;
}i
struct rect
struct point UL;
struct point LR;

}i




138 Chapter7

The function prototype is as follows:

int Overlap (struct rect A, struct rect B);

Before you jump into the problem, it’s important to work out a few
properties about rectangles and their vertices. First, given the upper left
(UL) point and lower right (LR) corners, it is not difficult to get the upper
right (UR) and lower left (LL) corners. The coordinates of the upper right
corner are the upper left’s y and the lower right’s x. The lower left corner
is at the upper left’s x and the lower right’s y.

It is also useful to be able to determine whether a point falls inside a
rectangle. A point is inside a rectangle if the point’s x is greater than the
rectangle’s UL’s x and less than the rectangle’s LR’s x and the point’s y is
greater than the rectangle’s LR’s y and less than the rectangle’s UL’s y.
You can see an illustration of this in Figure 7.2, where point 1 is inside rec-
tangle A. Now we can move on to the problem.

This problem seems pretty straightforward. Start by considering the
ways two rectangles can overlap. Try to break the different ways that rec-
tangles overlap into various cases. A good place to begin is by examining
where the corners of a rectangle end up when it overlaps another. Per-
haps you could enumerate the ways two rectangles can overlap by count-
ing the number of corners of one rectangle that are inside the other
rectangle. The cases that you must consider are when one of the rectan-
gles will have 0, 1, 2, 3, or 4 corners inside the other. Take these cases one
at a time. Begin by considering a case where no corners of either rectangle
are inside the other. This is illustrated in Figure 7.3.

Consider what conditions have to be true for two rectangles to overlap
without having any corners inside each other. First, the wider rectangle
must be shorter than the narrower rectangle. Next the two rectangles
must be positioned so the overlap occurs. This means that the narrower
rectangle’s x coordinates must be between the wider rectangle’s x coordi-

X

Figure 72 Picture of coordinate system and rectangles.
T




Other Programming Topics

139

X

Figure 7.3 Rectangles overlapping with no corners inside each other.

nates and the shorter rectangle’s y coordinates must be between the taller
rectangle’s y coordinates. If all of these conditions are true, you have two
rectangles that overlap without having any corners inside of one another.

Now consider the second case where rectangles may overlap with one
corner inside the other. This is illustrated in Figure 7.4. This case is rela-
tively easy. You can simply check if any of the four corners of one rectan-
gle are inside the other rectangle.

In the third case, the rectangles may overlap if two points of one rectan-
gle are inside the other. This occurs when one rectangle is half in and half
out of the other rectangle, as illustrated in Figure 7.5. Here, one rectangle
has no corners inside the other, and one rectangle has two corners inside
the other. If you check the corners of the rectangle with no corners inside
the other, you will not find overlap. If you check the rectangle with two
corners overlapping, you must check at least three corners to determine
overlap. However, you can’t determine ahead of time which rectangle
will have no corners inside the other. Therefore, you must check three cor-
ners of each rectangle to test for overlap properly.

X

Figure 74 One corner inside another rectangle.




140 Chapter 7

X

Figure 75 Two corners of a rectangle inside the other.

The three-point case is very simple. It's just not possible. No matter
how you draw the rectangles, you can’t make it so that one rectangle has
exactly three corners inside the other.

The four-corner case is possible. This happens if one rectangle com-
pletely subsumes the other, as shown in Figure 7.6. If you check one cor-
ner of both rectangles, you can correctly determine overlap in this case.

Now, put your tests for determining overlap in the zero-corner, one-
corner, two-corner, and four-corner cases together to encompass all of
these cases. These tests are checking the widths, heights, and positions of
both rectangles, the four corners of one rectangle, the three corners of
each rectangle, and the one corner of each rectangle, respectively. You
could test each of these cases individually, but that’s very repetitive.
Instead, try to develop a single test that encompasses all of these cases.
Start by checking the widths, heights, and positions of both rectangles to
cover the zero-corner case. Next, check the four corners of one rectangle
to cover the one-corner case. Then, to include the two-corner case, you'll
also have to check three corners of the other rectangle. Luckily, the four-
corner case is already covered if you check four corners of one rectangle

X

Figure 7.6 Four corners of a rectangle inside the other.




Other Programming Topics

141

and three of the other because you're clearly checking one corner of
each. The composite test to determine rectangle overlap is to check the
following:

The heights, widths and positions of both rectangles
If any of four corners of one rectangle are inside the other

If any of three corners from the second rectangle are inside the first

This solution to test for overlap is correct, but it seems inefficient. It
checks the heights, widths, and positions of both rectangles as well as
seven of eight possible corners—and each corner check requires four com-
parisons. This results in 34 comparisons to calculate the answer.

Perhaps there is a better solution. Another way to think about the prob-
lem is to consider when the rectangles don’t overlap, as opposed to when
they do overlap. If you know when the rectangles don’t overlap, you
know when they do overlap. The conditions for not overlapping are
much more straightforward. Call the two rectangles A and B. A and B do
not overlap when A is above B, or A is below B, or A is to the left of B, or
A is to the right of B. It is possible for more than one of these conditions to
be true at the same time. For example, A could be above and to the right
of B. If any one of these conditions is true, the two rectangles do not over-
lap. The specifics of these conditions are summarized in the following.

The two rectangles do not overlap when:

A’s UL's x value is greater than B’s LR’s x value or

A’s UL’s y value is less than B’s LR’s y value or

A’s LR’s x value is less than B’s UL’s x value or

A’s LR’s y value is greater than B's UL’s y value

This solution is much simpler, requiring only four comparisons and one
negation. You can implement the function as follows:

int Overlap(struct rect A, struct rect B)

{

return(! ({(A.UL.x > B.LR.x) ||
(A.UL.y < B.LR.y) ||
(A.LR.x < B.UL.x) ||
(A.LR.y > B.UL.y)));

}

This function works, but you can do even better. It’s possible to get rid
of the logical NOT. A bit of logic theory called DeMorgan’s law may be
helpful in this. This law states that:



142 Chapter7

~(AOR B) = ~A AND -B?
- (AAND B) = ~AOR -B

Also, you should recognize that:
—(A > B) is equivalent to (B < A)
Working through these rules, you'll get the following function:

int Overlap(struct rect A, struct rect B)

{

return((A.UL.X <= B.LR.X) &&
A.UL.y »>= B.LR.y) &&
A.LR.Xx »>= B.UL.X) &&
A.LR.y <= B.UL.y));

To make sure that you didn’t make a mistake, it's a good idea to check
that these conditions make sense. This function determines that two rec-
tangles overlap if:

A’s left edge is to the left of B’s right edge and
A’s upper edge is above B’s bottom edge and
A’s right edge is to the right of B’s left edge and
A’s bottom edge is below B’s upper edge.

These conditions mean that rectangle B cannot be outside of rectangle
A, so there must be some overlap. This makes sense.

Problem: Big-endian or Little-endian

= Write a function that determines whether a computer is big-
endian or little-endian.

This question tests your knowledge of computer architectures as much
as it tests your ability to program. The interviewer wants to know if you
are familiar with the term endian. If you are familiar with it, you should
define it or at least try to point out the differences between big-endian
and little-endian, even if you forget which is which. If you are not familiar
with the term, you'll have to ask the interviewer to explain it.

Endianness refers to the order in which a computer stores the bytes of a
multibyte value. Almost all modern computers use multibyte sequences
to represent certain primitive data types. For example, an integer is usu-

3- means NOT in the logic world.




Other Programming Topics

143

ally 4 bytes. The bytes within an integer can be arranged in any order, but
they are almost always either least-significant byte (LSB) to most-signifi-
cant byte (MSB) or MSB to LSB. Significance refers to the place values a
byte represents in a word. If a byte represents the lowest place values in a
word the byte is the LSB. For example, in the number 5A6C, 6C is the
LSB. Conversely, if a byte represents the highest place values in the word,
it is the MSB. In the 5A6C example, 5A is the MSB.

In a big-endian machine the MSB has the lowest address; in a little-
endian machine the LSB has the lowest address. For example, a big-
endian machine stores the 2-byte hexadecimal value A45C by placing A4
in the first byte and 5C in the second. In contrast, a little-endian machine
would store 5C in the first byte and A4 in the second.

You will have to choose some multibyte data type to work with. It’s not
important which one you choose, just that the type is more than one byte.
An integer is a good choice. You’ll need to determine how you can test
this integer to figure out which byte is LSB and which is MSB. If you set
the value of the integer to 1, you will be able to distinguish between the
MSB and the LSB because in an integer with the value 1, the LSB has the
value 1 and the MSB has the value 0.

Unfortunately, it’s not immediately clear how to access the bytes of an
integer. You might try using the bit operators because they allow access to
individual bits in a variable. However, they are not particularly useful
because the bit operators act as if the bits are arranged in order from least-
significant bit to most-significant bit. For example, if you use the shift left
operator to shift the integer 8 bits, the operator works on the integer as if
it were 32 consecutive bits regardless of the true internal byte order. This
property prevents you from using the bit operators to determine the byte
order.

How might you be able to examine the individual bytes of an integer?
A character is a single-byte data type. It could be useful to view an integer
as four consecutive characters. To do this, you create a pointer to the inte-
ger. Then, you can cast the integer pointer to a character pointer. This
allows you to access the integer like an array of 1-byte data types. Using
the character pointer, you can examine the bytes and determine the
format.

Specifically, to determine the computer’s endianness, get a pointer to
an integer with the value of 1. Then, cast the pointer to a char *. This
changes the size of the data that the pointer points to. When you derefer-
ence this pointer you access a 1-byte character instead of a 4-byte integer.
Thus, you can test the first byte and see if it is 1. If the byte’s value is 1,
the machine is little-endian because the LSB is at the lowest memory




144 Chapter 7

address. If the byte’s value is 0, the machine is big-endian because the
MSB is at the lowest memory address. In outline form, the procedure is

this:
Set an integer to 1
Cast a pointer to the integer as a char *
If the dereferenced pointer is 1, the machine is little-endian
If the dereferenced pointer is 0, the machine is big-endian

The code for this test is as follows:

/* Returns 1 if the machine is little-endian, 0 if the
* machine is big-endian

*/

int Endianness (void)

{

int testNum;
char *ptr;

testNum = 1;
ptr = (char *) &testNum;
return (*ptr); /* Returns the byte at the lowest address */

}

This solution is sufficient for an interview. As the goal of an interview is
not just to solve problems, but also to impress your interviewer, you may
want to consider a slightly more elegant way to solve this problem. It
involves using a feature of C called union types. A union is like a struct,
except that all of the members are allocated starting at the same location
in memory. This allows you to access the same data with different vari-
able types. The syntax is almost identical to a struct. Using a union, the
code is the following:

/* Returns 1 if the machine is little-endian, 0 if the

* machine is big-endian
iné Endianness (void)

{
union {
int theInteger;
char singleByte;
} endianTest;

endianTest.theInteger = 1;
return endianTest.singleByte;




Other Programming Topics

145

Problem: Number of Ones

= Write a function that determines the number of 1 bits in the com-
puter’s internal representation of a given integer.

This problem may at first sound like a base conversion problem in
which you have to design an algorithm to convert a base 10 number to a
two’s complement binary number. That approach is circuitous because
the computer already internally stores its numbers in two’s complement
binary. Instead of doing a base conversion, try counting the 1’s directly.

You can count the number of 1’s by checking the value of each bit. Ide-
ally, you’d like to use an operator that would tell you the value of a speci-
fied bit. That way, you could iterate over all of the bits and count how
many of them were 1’s. Unfortunately, this ideal operator doesn’t exist.

You can begin by trying to create a procedure that determines the value
of each bit using the existing bit operators. Focus on figuring out a way to
get the value of the lowest bit. One way to do this is to AND the given
integer with the value 1. 1 is stored as 00000001 in a computer with 8-bit
integers.* The result would be either 00000000 if the given integer’s low-
est bit had the value 0 or 00000001 if the given integer’s lowest bit had the
value 1. In general, you can get the value of any bit if you create the cor-
rect mask. In this case, the mask is an integer with all the bits set to 0
except the bit you're checking, which is set to 1. When you AND a mask
with the value you’'re checking, the result is either a 0, indicating that the
bit you are checking has the value 0, or a non-zero result, indicating that
the bit you are checking has the value 1.

You could create a mask for each of the bits and count the number of 1
bits. For example, the first mask would be 00000001, followed by masks of
00000010, 00000100, 00001000. . . . This would work, but your interviewer
probably doesn’t want to watch you write out that many masks. Consider
the differences between each mask. Each mask is the same as the previous
masgk, but the 1 bit is moved one place to the left. Instead of predefining
your masks, you can construct them using the shift left operator. Simply
start with a mask of 00000001 and repeatedly shift the integer one bit to
the left to generate all the necessary masks. This is a good technique,
and if you work it out to its conclusion, it yields an acceptable answer.
However, there’s a prettier and slightly faster solution that uses only
one mask.

“Most modern architectures have at least 32-bit integers, but 32-digit numbers are a little hard to
fit on a page, so we’ve chosen to illustrate our examples with 8-bit integers.



146 Chapter 7

Think about what you can do with a single mask. You are trying to exam-
ine each bit of the integer, so you need to mask a different bit on each itera-
tion. So far, you’ve been accomplishing this by shifting the mask and
keeping the integer still, but if you shifted the integer, you could examine
all of its bits using the same mask. The most natural mask to use is
00000001, which yields the least-significant bit. If you keep shifting the inte-
ger right, each bit will eventually become the rightmost bit. Try working
through 00000101 as an example. The rightmost bit is 1 so you would add 1
to your count and shift the integer right, yielding 00000010. This time the
rightmost bit is 0. Shifting right again gives 00000001. The least significant
bit in this integer is 1, so you would increment your count to 2. When you
shift right a third time, the integer becomes 00000000. When the integer’s
value reaches zero there are no 1 bits remaining, so you can stop counting.
As in this example, you may not have to iterate through all the bits to count
all the 1’s, so in many cases, this algorithm is more efficient than the multi-
ple mask algorithm. In outline, the single mask algorithm is as follows:

Start with count =0

While the integer is not 0
If the integer AND 1 equals 1, increment count
Shift the integer one bit to the right

Return count

Finally, check for any error cases in this code; you'll want to look for
problems with positive numbers, negative numbers, and zero. If the integer
has the value of 0, the algorithm immediately and correctly returns that
there are zero 1’s in the binary representation. Now, consider the case
where you are passed a negative number. The number will be shifted to the
right, but the new bit added on the left will be a 1 and not a 0 because the
shift right operator sign extends. This means that the integer value will
eventually become all 1’s and not all ’s as desired. To correct this, you will
want to read the value as an unsigned integer. This way, the shift operator
will not sign extend and the new bits that are added during the right shift-
ing will be 0’s. The result is that the number will eventually become all 0’s.
Finally, consider the case where you are given a positive integer. This is the
sample case that you worked with, and the algorithm works correctly here.

The code for this algorithm is this:

int NumOnesInBinary (unsigned int number)

{

int numOnes = 0;




Other Programming Topics 147

while (number) {
if (number & 1)
numones++;
number = number >> 1;

}

return numOnes;

}

What's the running time of this function? The function will iterate
through the while loop until all the 1’s have been counted. In the best
case, the given integer is 0, and the function never executes the while
loop. In the worst case, this is O(n) where  is the size in bits of an integer.

Unless you're incredibly good at bitwise operations, this is the best
solution you're likely to come up with in an interview. There are better
solutions, though. Look at what happens at the bit level when you sub-
tract 1 from a number. Subtracting 1 produces a value that has all the
same bits as the original integer except that all the low bits up to and
including the lowest 1 are flipped. For example, subtracting 1 from the
value 01110000 results in the value 01101111.

If you apply the AND operation to the integer and the result of the
subtraction, the result is a new number that is the same as the original
integer except the rightmost 1 is now a 0. For example, 01110000 AND
(01110000 - 1) = 01110000 AND 01101111 = 01100000.

You can count the number of times that you can perform this process
before the integer’s value reaches 0. This is the number of 1’s in the com-
puter’s representation of the number. In outline form this algorithm is as
follows:

Start with count =0

While the integer is not zero
AND the integer with the integer - 1
Increment count

Return count

The code for this is the following:

int NumOnesInBinary(int number)
{
int numOnes = 0;
while (number) {
numper = number & (number - 1);
numOnes++;

}

i return numoOnes;
- I LT g ST T T R o o



148 Chapter?7

This solution has a running time of O(m) where m is the number of 1's
in the solution. There may be even better solutions. Keep in mind that this
solution was presented for interest, and the first solution is all that would
be expected in an interview.

Problem: Simple SQL
= Given a database with the table

Olympics(city CHAR(16), year INT(4));

write a SQL statement to insert Montreal and 1976 into the data-
base.

This is an extremely easy question that an interviewer might use to
determine whether you have ever used SQL before or whether you were
padding your resume when you mentioned it. If you know SQL, you're
all set. It’s a straightforward SQL INSERT statement; no tricks at all. If you
don't really know SQL, you're in trouble. The correct answer is:

INSERT INTO Olympics VALUES('Montreal', 1976);

Problem: Company and Employee
Database

= You are given a database with the following tables:

Company (companyName CHAR(30), id INT(4));
EmployeesHired (id INT(4), numHired INT(4),
fiscalQuarter INT(4));

You may make the assumption that the only possible fiscal quar-
ters are 1 through 4. Sample data for this schema are presented in
Table 7.3.

Write a SQL statement that returns the names of all the companies
that hired employees in fiscal quarter 4.

This question involves retrieving data from two tables. You will have to
join the two tables to get all of the needed information. id is the only key
common to both tables so you will want to join on the value id. Once you
have joined the two tables, you can select the company name where the
fiscal quarter is 4. This SQL statement looks like this:

SELECT companyName FROM Company, EmployeesHired :
WHERE Company.id = EmployeesHired.id AND fiscalQuarter = 4; 3




Other Programming Topics

149

Table 7.3 Company and Employees Sample Data

COMPANYNAME 1D
Hillary Plumbing 6
John Lawn Company 9
Dave Cookie Company 19
Jane Electricity 3
1D NUMHIRED FISCALQUARTER
3 3 3
9 2 4
19 4 1
6 2 1

There is a small problem with this SQL statement. Think of what might
happen if a company did not hire anyone in Q4. There could still be a
tuple like EnployeesHired (6, 0, 4).The company with id 6 would be
returned by the preceding query even though they hired no one during
fiscal quarter 4. To fix this bug, you need to make sure that numHired is
greater than 0. The revised SQL statement looks like this:

SELECT companyName FROM Company, EmployeesHired

WHERE Company.id = EmployeesHired.id AND fiscalQuarter = 4 AND numHired
> 05

= Now, using the same schema, write a SQL statement that returns
the names of all companies that did not hire anyone in fiscal quar-
ters 1 through 4.

The best way to start this problem is by looking at the previous answer.
You know how to get the names of all of the companies that hired an
employee in quarter 4. If you remove the WHERE condition that f£is-
calQuarter = 4,you will have a query that returns the names of all
companies that hired employees during all fiscal quarters. If you use this
query as a subquery and select all of the companies that are not in the
result, you will get all of the companies that did not hire anyone in fiscal
quarters 1 through 4. As a slight optimization, you can select just the id
from the EmployeesHired table and print out the companies that do not
have an id returned. The query looks like this:




150 Chapter?

SELECT companyName FROM Company WHERE id NOT IN
(SELECT id from EmployeesHired WHERE numHired > 0);

= Finally, return the names of all companies and the total number of
employees that each company hired during fiscal quarters 1
through 4.

You're asked to retrieve the totals of some sets of values, which indi-
cates that you will have to use the suM aggregate. In this problem, you
don’t want the sum of the entire column, you want only a sum of the val-
ues that have the same id. To accomplish this task, you will need to use
the GROUP BY feature. This feature allows you to apply SUM over grouped
values of data. Other than the GROUP BY feature, this query is very simi-
lar to the first query except you leave out the fiscalQuarter = 4 inthe
WHERE clause. The query looks like this:

SELECT companyName, SUM(numHired)

FROM Company, EmployeesHired

WHERE Company.id = EmployeesHired.id
GROUP BY companyName;

Problem: Max, No Aggregates
m Given the SQL database schema

Test (num INT(4));

write a SQL statement that returns the maximum value from num
without using an aggregate (MAX, MIN, etc.).

In this problem, your hands are tied behind your back—you have to
find a maximum without using the feature designed for finding the maxi-
mum. A good way to start is by drawing a table with some sample data as
in Table 7.4.

Table 7.4 Sample Values for num

5




Other Programming Topics 151

In this sample data, you want to print out the value 23. 23 has the prop-
erty that all other numbers are less than it. Though true, this way of look-
ing at things doesn’t offer much help with constructing the SQL
statement. A similar but more useful way to say the same thing is that 23
is the only number that does not have a number that is greater than it. If
you could return every value that does not have a number greater than it,
you would return only 23, and you would have solved the problem. Try
designing a SQL statement to print out every number that does not have a
number greater than it.

First, you will want to figure out which numbers do have numbers
greater than themselves. This is a more manageable query. Begin by join-
ing the table with itself to create all possible pairs where each value in one
column is greater than the corresponding value in the other column, as in
the following query:

SELECT Lesser.num, Greater.num

FROM Test AS Greater, Test AS Lesser
WHERE Lesser.num < Greater.num;

Using the sample data, this yields the results in Table 7.5.

As desired, every value is in the lesser column except the maximum
value of 23. Thus, if you use the previous query as a subquery and select
every value not in it, you will get the maximum value. This query would
look like this:

SELECT num from Test WHERE num NOT IN

(SELECT Lesser.num FROM Test AS Greater, Test AS Lesser
WHERE Lesser.num < Greater.num);

There is one minor bug in this query. If the maximum value is repeated
in the Test table, it will be returned twice. To prevent this, use the
DISTINCT keyword. This changes the query to the following:

Table 7.5 Temporary Table Formed after Join

LESSER GREATER

-6 23
5 23
7 23

-6 7
5 7

-6 5

BV



152 Chapter7

SELECT DISTINCT num from Test WHERE num NOT IN
(SELECT Lesser.num FROM Test AS Greater, Test AS Lesser
WHERE Lesser.num < Greater.num);

Problem: Producer/Consumer

= Write a Producer thread and a Consumer thread that share a fixed
size buffer and an index to access the buffer. The Producer should
place random numbers into the buffer while the Consumer should
remove the numbers. Implement this problem both in C using
semaphores and in Java using the Java thread methods.

If you’ve worked with multithreaded programs before, this is a prob-
lem that you may have seen. It’s one of the canonical concurrency prob-
lems. If you’ve never worked with multithreaded programs, you
probably won’t be able to solve this problem.

First, try implementing the problem without any concurrency control,
and then comment on what the problems are. The algorithm isn’t very
difficult without concurrency control. The producer and consumer look
like this:

static int index = 0;

static int buffer([8];
void Producer()

{
while (1) {
if (index < 7) {
buffer([index] = rand();
index++;

}

void Consumer ()

{
while (1) {
if (index > 0) {
printf ("$d\n", buffer[index]);
index--;

}

The major bug in this implementation is that the buffer is not protected.
One problem that could result is that the producer may write to the buffer
and get swapped out before the index is updated. Then, the consumer

— N ,



Other Programming Topics

153

may consume the wrong element. Additionally, the index could be
improperly updated and get out of synch with the last buffer element.

The critical area of code is the portion containing the array access and
index updates. You need to protect the critical section of code with a
binary semaphore that limits access to this section of code to only one
thread at a time. You will initialize the semaphore to 1 because it is a
binary semaphore. This change results in the code:

static int index = 0;
static int buffer([8];
static Semaphore bufferWrite;

void init ()
{

bufferwrite = newSemaphore (1) ;

}

void Producer ()

{
while (1) {
wait (BufferWrite) ;
if (index < 7) {
buffer[index] = rand();
index++;

}

signal (BufferWrite) ;

}

void Consumer ()
{
while (1) {
wait (BufferwWrite) ;
if (index > 0) {
printf ("$d\n", buffer[index]);
index--;
}

signal (BufferWrite) ;

}

This solution corrects the previous bug. It locks access to all shared
variables and the threads will now function correctly. However, correct-
ness is not the only concern. There is another problem that can affect effi-
ciency. Imagine what would happen if the producer were much slower
than the consumer. The consumer would often wake up, grab the lock,
see that the buffer was empty, and then go back to sleep. This constant



154 Chapter 7

waking up, doing nothing, and then going back to sleep is called busy
waiting and wastes resources. Generally, the consumer should be awake
only if there is something to consume. Similarly, the producer should be
awake only if there are empty slots in the buffer.

This efficiency bug can also be fixed with semaphores. One semaphore
will indicate whether the buffer is full. The producer thread will wait on
this semaphore. The consumer thread will signal this semaphore each
time that it removes an element from the buffer. Initially, the buffer is
empty. Thus, this semaphore should be initialized to the number of buffer
slots so the semaphore starts to block when there are no more spaces in
the buffer.

Similarly, a different semaphore indicates whether the buffer is empty.
The consumer should wait on this semaphore, and the producer should
signal it each time that it writes to the buffer. This semaphore should start
out preventing the consumer from consuming from the buffer because the
buffer is initially empty so it should be initialized to 0.

Finally, it’s important to order the semaphores correctly. Consider the
case where the binary semaphore protecting the critical section comes
before the efficiency semaphores. This could cause deadlock if the con-
sumer grabs the semaphore for the critical section but has to wait on the
semaphore indicating that the buffer is not empty. Similarly, if the pro-
ducer grabs the semaphore protecting the critical section and has to wait
on the semaphore indicating the buffer is not full, deadlock could also
occur. Therefore, the semaphore protecting the critical section should
come after the other semaphores.

Keeping these concerns in mind, the code for this is the following:

static int index = 0;

static int buffer([8];

static Semaphore bufferWrite;

static Semaphore bufferNotFull;
static Semaphore bufferNotEmpty;

void init (void)

{
bufferWrite = newSemaphore (1) ;
bufferNotFull = newSemaphore (8);
bufferNotEmpty = newSemaphore (0) ;

}

void Producer (void)

{

while (1) {
wait (bufferNotFull) ;



Other Programming Topics

wait (bufferWrite);
buffer [index] = rand{();
index++;

signal (bufferWrite) ;
signal (bufferNotEmpty) ;

void Consumer ()

{

}

while (1) {
wait (bufferNotEmpty) ;
wait (bufferWrite) ;
printf ("%d\n", buffer[index]);
index--;
signal (bufferWrite) ;
signal (bufferNotFull);

In Java, concurrency is dealt with a little differently. All Java threads
must extend the Thread class. They then implement the run method,
which is called when the thread is started. The following example also
uses the Java synchronized keyword, the wait method, and the
notifyAll method. The main function in the following example is
included to illustrate how you would call these threads.

import java.util.Random;

class Producer extends Thread {

private static final int MAX CAPACITY =

private static final int RANDOM_RANGE
private int[] buffer;

private int index;

private Random generator;

public Producer ()

buffer = new int [MAX CAPACITY];
generator = new Random(23);

index = 0; // initally empty

public void run()
{
while (true) {

try {
putlInt () ;

}

128;



156 Chapter?7

catch(InterruptedException e) {}

private synchronized void putlInt() throws InterruptedException
{

while (index == MAX_CAPACITY) { // Buffer is full.

walt () ;

}

buffer[index] = generator.nextInt (RANDOM_RANGE) ;

index++;

notifyAll(); // Let other threads know that something

// has happened.

// Called by the consumer.
public synchronized int getInt() throws InterruptedException
{
notifyAll(); // Need to make sure that we're
// not stuck with this thread.
while (index <= 0) ({
wait () ;

index--;
return buffer [index] ;

class Consumer extends Thread {
private Producer producer;

public Consumer (Producer theProducer)

{

producer = theProducer;

public void run{()

{

try {
while (true) ({
System.out.println("Int is " + producer.getInt());

}

catch (InterruptedException e) {}



Other Programming Topics 157

public static void main(String args[]) ({
Producer producer = new Producer();
producer.start () ;
new Consumer (producer) .start () ;



In addition to technical and programming questions, you will often
encounter brainteasers in your interviews. Brainteasers are mathematics
and logic puzzles that have no direct relation to computers. Some inter-
viewers feel these questions are silly because they have no direct bearing
on the job at hand and won't ask any of them. Many interviewers,
though, think brainteasers are useful in assessing problem-solving abil-
ity—perhaps the most important job skill. Interviewers may also be influ-
enced by the knowledge that industry leaders like Microsoft use
brainteasers in their interviews. Whatever the motivation, in some inter-
views as many as a third of the questions you are asked may be brain-
teasers.

In the authors’ opinion, performance on brainteasers says a lot about
your experience with working mathematical puzzles and very little about
whether you will be a valuable employee. The discussion and examples
in this and the next chapter aim to give you this experience so you can be
successful with brainteasers. These questions draw from a much broader
and more diverse body of knowledge than programming and technical
questions, so a topical review is not really possible. However, brainteasers




/ 160 Chapter 8

do have a number of common themes. Familiarity with these commonali-
ties and experience with brainteasers in general can be a great help in
solving these puzzles.

One of the most important themes to keep in mind is that the solutions
to brainteasers are almost never straightforward or obvious. Unlike the
programming or technical parts of the interview, where you will some-
times be asked simple questions just to see whether you know something,
brainteasers always require thought and effort. This means that any solu-
tion that seems immediately obvious is probably incorrect or not the best
solution. For instance, suppose you're asked, “From the time you get on a
ski lift to the time you get off, what proportion of the chairs do you pass?”
Most people’s immediate gut-level response is that you pass half of the
chairs. This response is obvious and makes some sense. At any given
time, half of the chairs are on each side of the lift, and you pass chairs
only on the other side. It’s also wrong—because both sides of the lift are
moving, you pass all the other chairs.!

This property works most strongly to your advantage when you are
faced with a problem that has only two possible answers (for example,
any yes or no question). Whichever answer seems at first to be correct is
probably wrong. It's probably not a good idea to say, “The answer must
be yes because if it were no this would be a very simple problem and you
wouldn’t have bothered to ask it.” You can, however, use this knowledge
to guide your thinking.

m The obvious answer is almost never the right answer.

Although the correct solutions to brainteasers are usually complex,
they rarely require time-consuming computations or mathematics beyond
trigonometry. Just as writing pages of code is a warning sign that you're
headed in the wrong direction, using calculus or spending a long time
number-crunching is a strong indicator that you’re not headed toward the
best solution to one of these puzzles.

Many of these problems are difficult because they suggest an incorrect
assumption that leads you to the wrong answer. Based on this knowl-
edge, you might conclude that the best approach is to avoid making any
assumptions. Unfortunately, that’s not really practical—even understand-
ing a problem is very difficult without making a whole series of assump-
tions. For instance, suppose you are given the problem of finding an

'Assuming you get on and off at the extreme ends of the lift. On most real ski lifts, you pass
almost all the other chairs.




Counting, Measuring, and Ordering Puzzles

arrangement that maximizes the number of oranges you can fit in the bot-
tom of a square box. You would probably automatically assume that the
oranges are small spherical fruit, that they are all about the same size, that
“in the bottom” means in contact with the bottom surface of the box, and
that the oranges must remain intact (you can’t puree them and pour them
in). These assumptions may seem ridiculous—they are all rather obvious,
and they are all correct. The point is that assumptions are inherent in all
communication or thought; you can’t begin to work on a problem with-
out assumptions.

Carrying this example further, you might assume you could model this
problem in 2D using circles in a square, and that the solution would
involve some sort of orderly, repeating pattern. Based on these assump-
tions and the knowledge that a honeycomb-like hexagonal array provides
the tightest pack of circles covering a plane, you might conclude that the
best solution is to place the oranges in a regular hexagonal array. Depend-
ing on the relative sizes of the oranges and the box, this conclusion would
be incorrect.

Although you can’t eliminate assumptions, it can be useful to try to
identify and analyze them. As you identify your assumptions, categorize
them as almost certainly correct, probably correct, or possibly incorrect.
Starting with the assumption you feel is least likely to be correct, try
reworking the problem without each assumption. Keep in mind that these
puzzles are rarely trick questions, so your definitional assumptions are
usually correct.

For instance, in the preceding example, it would be reasonable to clas-
sify the assumptions that oranges are spherical fruit and that they must
remain intact and in contact with the bottom of the box as almost cer-
tainly correct. How would you categorize the assumption that you can
reduce this puzzle to a 2D problem of circles in a square? If you think
about it, you can see that the oranges make contact with each other in a
single plane, and that in this plane you're essentially dealing with circles
inside a square. This isn’t exactly a proof, but it’s solid enough to decide
that this assumption is probably correct. On the other hand, you'll find
you have more trouble supporting the assumption that the oranges
should be in an orderly repeating pattern. It seems reasonable, and it is
true for an infinite plane, but it’s not clear that the similarities between a
plane and the box bottom are sufficient for this assumption to be true. In
general, beware of any assumption that you feel is true but can’t quite
explain why—this is often the incorrect assumption. You would therefore
conclude that the assumption that the oranges must form an ordered
array is possibly incorrect. In fact, this assumption is incorrect. In many

B e S



162 Chapter 8

cases the best packing involves putting most of the oranges in an ordered
array and the remaining few in unordered positions. Analyzing your
assumptions is a particularly good strategy when you think you’ve come
up with the only logically possible solution, but you’re told it’s incorrect.
It’s often the case that your logic was good, but that it was based on a
flawed assumption.

m If the solution that seems logical is wrong, you made a false
assumption. Categorize your assumptions, and try to identify those that are
false.

Some questions are intimidating because they are so complex or diffi-
cult that you can’t see a path to the solution. You may not even know
where to start. Don’t let this lock you up. You don’t have to have a plan
for getting all the way to the solution before you start—things will come
to you as you work. If you can identify a subproblem, try solving that,
even if you're not sure it’s critical to solving the main problem. Try solv-
ing a simplified version of the problem—you may gain insights that will
be useful in solving the full problem. If the problem involves some sort of
process, try working through some specific examples. You may notice a
pattern you can generalize to other cases. Above all, keep talking, keep
thinking, and keep working. The pieces of the puzzle are much more
likely to fall into place when your mind is in motion than when you are
sitting at the starting line praying for a revelation. Even if you don’t make
much progress, it looks much better to the interviewer when you actively
attack a problem than when you sit back stumped, looking clueless and
overwhelmed. Remember, you came to the interview to demonstrate that
you will be a valuable employee. Analyzing the problems and patiently
trying a variety of approaches shows this almost as well as solving prob-
lems does.

.]m- Don’t be intimidated by complexity. Try a subproblem, a
simplified version, or some examples. Be patient, keep working, and keep

talking.

Other questions are tricky for the opposite reason: They are so simple
or restricted that it seems that there’s no way to solve the problem within
the given constraints. In these circumstances brainstorming can be useful.
Try to enumerate all the possible actions that are legal within the con-
straints of the problem, even those that seem counterproductive. If the
problem involves physical objects, consider every object, the properties of




Counting, Measuring, and Ordering Puzzles

163

every object, what you might do to or with each object, and how the
objects might interact. When you're stuck on a problem like this, there
may be something allowed by the problem that you're missing. If you
make a list of everything allowed by the constraints of the problem, it will
include the key to the solution that hadn’t occurred to you. It’s often eas-
ier to enumerate all the possibilities than it is to specifically come up with
the one thing you haven’t been thinking of. When you do this enumera-
tion, don’t do it silently; speak it aloud or write it down. This shows the
interviewer what you're doing and helps you be more methodical and
thorough.

m When you’re stuck on a simple, restricted problem, brainstorm
about all the possibilities to identify the one you're missing.

There’s one more type of problem worth discussing. This is the estima-
tion problem, where you're asked to use a rational process to estimate the
size of some statistic you don’t know. These questions are relatively rare
in interviews for pure development positions, but they may be more com-
mon in interviews for jobs that include a significant management or busi-
ness aspect. One estimation problem is “How many gas stations are there
in the United States?” It has been so widely reported that this question is
asked by Microsoft that it seems almost certain to be apocryphal; never-
theless, it is a good example.

These questions are usually not difficult compared with the more com-
mon brainteasers. You're not expected to have any idea what the actual
statistic or fact is. Instead, you are expected to do a rough order of magni-
tude calculation based on facts you do know. Because everything is an
estimate anyway, try to adjust or round your figures so that any large
numbers you use are powers (or at least multiples) of ten. This will signif-
icantly simplify your arithmetic.

Taking the gas station problem as an example, your calculation might
go like this: “It takes me about 6 minutes to fill up my car. I go to the gas
station about once a week, and there are usually two other cars there. If I
assume this is average for Americans, each gas station services about 30
cars an hour. Suppose a gas station were open 12 hours a day, 7 days a
week. That would be 84 hours a week. In reality, a gas station is probably
open more than 12 hours a day, so I'll say the average gas station is open
100 hours a week. That means it services 3,000 cars a week. There’s some-
where upwards of 250 million people in the United States. Not everyone
has a car, so say there are 100 million cars on the road. If every car goes to
the gas station once a week, like mine does, and each station sees 3,000




164 Chapter 8

cars a week, there would have to be about 33,000 gas stations in the
United States.” This figure is probably off by a lot, but it’s probably
within an order of magnitude (that is, there are more than 3,300 gas sta-
tions and fewer than 330,000). It's much more important that you are able
to form a framework for the estimation and rapidly work through the cal-
culations than that you accurately estimate the statistic. For more practice,
try estimating the number of kindergarten teachers in your state, the cir-
cumference of the earth, and the weight of a ferry boat.

Problem: Count Open Lockers

= Suppose you are in a hallway lined with 100 closed lockers. You
begin by opening all 100 lockers. Next, you close every second
locker. Then you go to every third locker and close it if it is open
or open it if it is closed (call this toggling the locker). You continue
toggling every nth locker on pass number n. After your hundredth
pass of the hallway, in which you toggle only locker number 100,
how many lockers are open?

In a hall with k lockers, how many lockers remain open after
pass k?

This problem is designed to seem overwhelming. You don’t have time
to draw a diagram of 100 lockers and count 100 passes through them.
Even if you did, solving the problem that way wouldn't illustrate any
skill or intuition, so there must be some trick that can be used to deter-
mine how many doors will be open. You just have to figure out what that
trick is.

It’s unlikely that you're going to be able to intuit the solution to this
problem by just staring at it. What can you do? Although it’s not practical
to solve the entire problem by brute force, solving a few lockers in this
manner is reasonable. Perhaps you'll notice some patterns you can apply
to the larger problem.

Start by choosing an arbitrary locker, say 12, and determining whether
it will end open or closed. On which passes will you toggle locker 12?
Obviously on the first pass, when you toggle every locker, and on the
twelfth pass when you start with 12. You don’t need to consider any pass
after 12 because those will all start farther down the hall. This leaves
passes 2 through 11. You can count these out: 2, 4, 6, 8, 10, 12 (you toggle
on pass 2); 3, 6,9, 12 (on 3); 4, 8, 12 (on 4); 5, 10, 15 (not on 5); 6, 12 (on 6);
7, 14 (not on 7), and so on. Somewhere in the middle of this process, you



Counting, Measuring, and Ordering Puzzles

will probably notice that you toggle locker 12 only when the number of
the pass you're on is a factor of 12. If you think about this, it makes sense:
When counting by n, you hit 12 only when some integer number of n’s
add to 12, which is another way of saying that  is a factor of 12. Though
it seems simple in retrospect, this probably wasn’t obvious before you
worked out an example.

The factors of 12 are 1, 2, 3, 4, 6, and 12. Correspondingly, the opera-
tions on the locker door are open, close, open, close, open, close. So locker
12 will end closed. The solution seems to have something to do with fac-
tors. Primes are numbers with unique factor properties. Perhaps it would
be instructive to investigate a prime numbered locker. You might select 17
as a representative prime. The factors are 1 and 17, so the operations are
open, close. It ends closed just like 12. Apparently primes are not neces-
sarily different from non-primes for the purposes of this problem.

What generalizations can you make about whether a locker ends open
or closed? All lockers start closed and alternate between being open and
closed. So lockers are closed after the second, fourth, sixth, etc., times they
are toggled—in other words, if a locker is toggled an even number of
times it ends closed, otherwise it ends open. You know that a locker is
toggled once for every factor of the locker number, so you can say that a
locker ends open only if it has an odd number of factors.

The task has now been reduced to finding how many numbers between
1 and 100 have an odd number of factors. The two you've examined (and
most others, if you try a few more examples) have even numbers of fac-
tors. Why is that? If a number i is a factor of n, what does that mean? It
means that i times some other number j is equal to n. Of course, because
multiplication is commutative (i X j = j x 7), that means that j is a factor of
n, too. So the number of factors is usually even because factors tend to
come in pairs. If you can find the numbers that have unpaired factors,
you will know which lockers will be open. Multiplication is a binary
operation, so there will always be two numbers involved, but what if they
are both the same number (that is, i = j)? Then a single number would
effectively form both halves of the pair and there would be an odd num-
ber of factors. When this is the case, i X i = n. So n would have to be a per-
fect square. Try a perfect square, say 16, to check this solution: factors are
1,2, 4, 8, 16; operations are open, close, open, close, open—as expected it
ends open.

Based on this reasoning, you can conclude that only lockers with num-
bers that are perfect squares end open. The perfect squares between 1 and
100 (inclusive) are 1, 2, 4, 9, 16, 25, 36, 49, 64, 81, and 100. So 10 lockers
would remain open.




166 Chapter 8

Similarly, for the general case of k lockers, the number of open lockers is
the number of perfect squares between 1 and k, inclusive. How can you
best count these? The perfect squares themselves are inconvenient to
count because they’re unevenly spaced. However, the square roots of the
perfect squares greater than zero are the positive integers. These are very
easy to count: the last number in the list of square roots gives the number
of items in each list. For example, the square roots of 1,4, 9,16, 25 are 1, 2,
3, 4, 5; the last number in the list of square roots is the square root of the
largest perfect square and is equal to the number of perfect squares. You
need to find the square root of the largest perfect square less than or equal
to k.

This task is trivial when k is a perfect square, but most of the time it |
won’t be. In these cases the square root of k will be a non-integer. If you -
round this square root down to the nearest integer, then its square is the
largest perfect square less than k—just what you were looking for. The
operation of rounding to the largest integer less than or equal to a given
number is often called “floor.” Thus, in the general case of k lockers, there
will be floor(sqrt(k)) lockers remaining open.

The key to solving this problem is trying strategies to solve parts of the
problem even when it isn’t clear how these parts will contribute to the
overall solution. Although some attempts, like the investigation of prime
numbered lockers, may not be fruitful, others are likely to lead to greater
insight about how to attack the problem, as with the strategy of calculat-
ing the result for a single locker. Even in the worst case where none of the
things you try lead you closer to the final solution, you show the inter-
viewer that you aren’t intimidated by difficult problems with no clear
solution and that you are willing to keep trying different approaches until
you find one that works.

Problem: Three Switches

= You are standing in a hallway next to three light switches, all of
which are off. Each switch operates a different incandescent light-
bulb in the room at the end of the hall. You cannot see the lights
from where the switches are. Determine which light corresponds
to each switch. You may go into the room with the lights only
once.

The crux of this problem comes quickly to the fore: There are only two
possible positions for each switch (on or off), but there are three lights to
identify. You can easily identify one light, by setting one switch differ-




Counting, Measuring, and Ordering Puzzles

167

ently than the other two, but this leaves you no way to distinguish the
two left in the same position.

When confronted with a seemingly impossible task, you should go
back to basics. The two key objects in this problem seem to be the
switches and the lights. What do you know about switches and light-
bulbs? Switches make or break an electrical connection. When a switch is
on, current flows through it. A lightbulb consists of a resistive filament
inside an evacuated glass bulb. When current flows through the filament,
it consumes power, producing light and heat.

How can these properties help you solve the problem? Which of them
can you detect or measure? The properties of a switch don’t seem too use-
ful. It’s much easier to look at the switch to see whether it’s off or on than
to measure current. The lightbulbs sound a little more promising. You can
detect light by looking at the bulbs, and you can detect heat by touching
them. Whether there is light coming from a bulb is determined entirely by
its switch—when the switch is on, there is light; when it’s off, there isn't.
What about heat? It takes some time for a light to heat up after it’s been
switched on, and some time for it to cool after it's switched off. So, you
could use heat to determine if a bulb had been on, even if it were off when
you walked into the room.

You can determine which switch goes with each bulb by turning the
first switch on, and the second and third off. After ten minutes, turn the
first switch off, leave the second off, and turn the third on. When you go
into the room, the hot dark bulb corresponds to the first switch, the cold
dark bulb to the second, and the lit bulb to the third.

Although there’s nothing truly outlandish about this question—it’s not
just a stupid play on words, for instance—it is arguably a trick question.
The solution involves coming up with something somewhat outside the
definition of the problem. Some interviewers believe that questions like
this will help them identify people who can “think outside the box” and
develop non-traditional, innovative solutions to difficult problems. In the
authors’ opinion, these questions are cheap shots that don’t prove much
of anything. Nevertheless, these questions do appear in interviews, and
you should be prepared for them.

Problem: Bridge Crossing

m A party of four travelers comes to a rickety bridge at night. The
bridge can hold the weight of at most two of the travelers at a
time, and it cannot be crossed without using a flashlight. The trav-
elers have one flashlight among them. Each traveler walks at a




168 Chapter 8

different speed: The first can cross the bridge in 1 minute, the sec-
ond in 2 minutes, the third in 5 minutes, and the fourth takes 10
minutes to cross the bridge. If two travelers cross together, they
walk at the speed of the slower traveler.

What is the least amount of time in which all the travelers can
cross from one side of the bridge to the other?

Because there is only one flashlight, each trip to the far side of the
bridge (except the last trip) must be followed by a trip coming back. Each
of these trips consists of either one or two travelers crossing the bridge. To
get a net movement of travelers to the far side of the bridge, you probably
want to have two travelers on each outbound trip and one on each
inbound trip. This strategy gives you a total of five trips, three outbound
and two inbound. Your task is to assign travelers to the trips so that you
minimize the total time for the five trips. For clarity, you can refer to each
traveler by the number of minutes it takes him to cross the bridge.

Traveler 1 can cross the bridge at least twice as fast as any of the other
travelers, so you can minimize the time of the return trips by always hav-
ing 1 bring the flashlight back. This suggests a strategy where 1 escorts
each of the other travelers across the bridge one by one.

One possible arrangement of trips using this strategy is illustrated in
Figure 8.1. The order in which 1 escorts the other travelers doesn’t change
the total time: The three outbound trips have times of 2, 5, and 10 minutes,
and the two inbound trips are 1 minute each, for a total of 19 minutes.

This solution is logical, obvious, and doesn’t take long to discover. In
short, it can’t possibly be the best solution to an interview problem. Your
interviewer would tell you that you can do better than 19 minutes, but
even without that hint you should feel you arrived at the preceding solu-
tion too easily.

This puts you in an uncomfortable, but unfortunately not unusual,
position. You know your answer is wrong, yet based on the assumptions
you made, it’s the only reasonable answer. It’s easy to get frustrated at
this point. You may wonder if this is a trick question: Perhaps you're sup-
posed to throw the flashlight back or have the second pair use a lantern.
No such tricks are necessary here. A more efficient arrangement of trips
exists. Because the only solution that seems logical is wrong, you must
have made a false assumption.

Consider your assumptions, checking each one to see if it might be false.
First among your assumptions was that outbound and inbound trips must
alternate. This seems correct—there’s no way to have an outbound trip




Counting, Measuring, and Ordering Puzzles

Trip Time
1 2
2 1
3 5
4 1
5 10

Total Time: 19 minutes

Figure 8.1 Traveler 1 escorting other travelers.

followed by another outbound trip because the flashlight would be on the
wrong side of the bridge. Next, you assumed that there would be two
travelers on each outbound trip and one on each return trip. This seems
logical, but it’s harder to prove. Putting two travelers on an inbound trip
seems terribly counter-productive; after all, you're trying to get them to
the far side of the bridge. An outbound trip with only one traveler is
potentially more worthwhile, but coupled with the requisite return trip all
it really accomplishes is exchanging the positions of two travelers.
Exchanging two travelers might be useful, but it will probably waste too
much time to be worth it. Because this possibility doesn’t look promising,
try looking for a false assumption elsewhere and reconsider this one if




170 Chapter 8

necessary. You also assumed that 1 should always bring the flashlight
back. What basis do you have for this assumption? It minimizes the time
for the return trips, but the goal is to minimize total time, not return trip
time. Perhaps the best overall solution does not involve minimized return
trip times. The assumption that 1 should always return the flashlight
seems hard to support, so it probably merits further examination.

If you're not going to have 1 make all the return trips, then how will
you arrange the trips? You might try a process of elimination. You obvi-
ously can’t have 10 make a return trip, because then he’d have at least
three trips, which would take 30 minutes. Even without getting the
remaining travelers across, this is already worse than your previous solu-
tion. Similarly, if 5 makes a return trip then you have two trips that are at
least 5 minutes, plus one that takes 10 minutes (when 10 crosses). Just
those three trips give you 20 minutes, so you won't find a better solution
by having 5 make a return trip.

You might also try analyzing some of the individual trips from your
previous solution. Because 1 escorted everyone else, there was a trip with
1 and 10. In a sense, when you send 1 with 10, 1’s speed is wasted on that
trip because the crossing still takes 10 minutes. Looking at that from a dif-
terent perspective, any trip that includes 10 always takes 10 minutes, no
matter which other traveler goes along. So, if you're going to have to
spend 10 minutes on a trip, you might as well take advantage of it and get
another slow traveler across. This reasoning indicates that 10 should cross
with 5, rather than with 1.

Using this strategy, you might begin by sending 10 and 5 across. But
then one of them has to bring the flashlight back, which you already
know isn’t the right solution. You’ll want to already have someone faster
than 5 waiting on the far side. Try starting by sending 1 and 2 across.
Then have 1 bring the flashlight back. Now that there’s someone reason-
ably fast (2) on the far side, you can send 5 and 10 across together. Then 2
returns the flashlight. Finally, 1 and 2 cross the bridge again. This scheme
is illustrated in the Figure 8.2.

The times for the respective trips under this strategy are 2, 1, 10, 2, and
2, for a total of 17 minutes. Identifying the false assumption improved
your solution by 2 minutes.

This problem is a slightly unusual example of a class of problems
involving optimizing the process of moving a group of items a few at a
time from one place to another. More commonly, the goal is to minimize
the total number of trips, and there are often restrictions on which
items can be left together. This particular problem is difficult because it
suggests a false assumption (that 1 should escort each of the other travel-




Counting, Measuring, and Ordering Puzzles

171

Trip Time
1 2
2 1
3 10
4 2
5 2

Total Time: 17 minutes

Figure 8.2 Matching similar speeds.

ers) that seems so obvious you may not even realize you're making an
assumption.

Problem: Heavy Marble

= You have eight marbles and a two-pan balance. All the marbles
weigh the same, except for one, which is heavier than all the oth-
ers. The marbles are otherwise indistinguishable. You may make
no assumptions about how much heavier the heavy marble is.
What is the minimum number of weighings needed to be certain
of identifying the heavy marble?



172 Chapter 8

The first step in solving this problem is to realize that you can put more
than one marble in each pan of the balance. If you have equal numbers of
marbles in each pan, then the heavy marble must be in the group on the
heavy side of the balance. This saves you from having to weigh each mar-
ble individually, and it allows you to eliminate many marbles in a single
weighing.

Once you realize this, you are likely to devise a binary search-based
strategy for finding the heavy marble. In this method, you begin by
putting half of the marbles on each side of the balance. Then you elimi-
nate the marbles from the light side of the balance and divide the marbles
from the heavy side of the balance between the two pans. As shown in
Figure 8.3, you continue this process until each pan holds only one mar-
ble, at which point the heavy marble is the only marble on the heavy side
of the balance. Using this process you can always identify the heavy mar-
ble in three weighings.

This may seem to be the correct answer. The solution wasn’t completely
obvious, and it’s an improvement over weighing the marbles one by one.

Weighing © = Normal marble
® = Heavy marble

Figure 8.3 Binary search for the heavy marble.




Counting, Measuring, and Ordering Puzzles

173

If you're telling yourself that this seemed too easy, you're right. The
method described so far is a good start, but it’s not the best you can do.

How can you find the heavy marble in fewer than three weighings?
Obviously, you'll have to eliminate more than half the marbles at each
weighing, but how can you do that?

Try looking at this problem from an information flow perspective.
Information about the marbles comes from the balance, and you use this
information to identify the heavy marble. The more information you
derive from each weighing, the more efficient your search for the marble
will be. Think about how you get information from the balance: You place
marbles on it and then look at the result. What are all the possible results?
The left pan side could be heavier, the right side could be heavier, or both
sides could weigh exactly the same. So there are three possible results, but
so far you've been using only two of them. In effect, you're only using %3
of the information that each weighing provides. Perhaps if you alter your
method so that you use all of the information from each weighing you
will be able to find the heavy marble in fewer weighings.

Using the binary search strategy, the heavy marble is always in one of
the two pans, so there will always be a heavy side of the balance. In other
words, you can’t take advantage of all the information the balance can
provide if the heavy marble is always on the balance. What if you divided
the marbles into three equal-sized groups, and weighed two of the groups
on the balance? Just as before, if either side of the balance is heavier, you
know that the heavy marble is in the group on that side. But now it’s also
possible that the two groups of marbles on the balance will weigh the
same—in this case, the heavy marble must be in the third group that’s not
on the balance. Because you divided the marbles into three groups, keep-
ing just the group with the heavy marble eliminates % of the marbles
instead of half of them. This seems promising.

There’s still a minor wrinkle to work out before you can apply this
process to the problem at hand. Eight isn’t divisible by three, so you can’t
divide the eight marbles into three equal groups. Why do you need the
same number of marbles in each group? You need the same number of
marbles so that when you put the groups on the balance the result doesn’t
have anything to do with differing numbers of marbles on each side.
Really, you need only two of the groups to be the same size. You'll still
want all three groups to be approximately the same size so you can elimi-
nate approximately %3 of the marbles after each weighing no matter
which pile has the heavy marble.

Now you can apply the three-group technique to the problem you were
given. Begin by dividing the marbles into two groups of three, which you




174 Chapter 8

put on the balance, and one group of two, which you leave off. If the two
sides weigh the same, the heavy marble is in the group of two, and you
can find it with one more weighing, for a total of two weighings. On the
other hand, if either side of the balance is heavier, the heavy marble must
be in that group of three. You can eliminate all the other marbles, and
place one marble from this group on either side of the balance. If one side
is heavier, it contains the heavy marble; if neither side is heavier, the
heavy marble is the one you didn’t place on the balance. This is also a
total of two weighings, so you can always find the heavy marble in a
group of eight using three weighings. An example of this process is illus-
trated in Figure 8.4.

m Generalize your solution. What is the minimum number of weigh-
ings to find a heavy marble among n marbles?

This is the part in which the interviewer determines whether you hit on
the preceding solution by luck or because you really understand it. Think
about what happens after each weighing. You eliminate %3 of the marbles
and keep %5. After each weighing you have Y3 as many marbles as you
did before. When you get down to one marble, you've found the heavy
marble.

Based on this thinking, you can reformulate the question as: “How
many times do you have to divide the number of marbles by 3 before you

Weighing

Figure 8.4 Optimum search for the heavy marble.

s >



Counting, Measuring, and Ordering Puzzles 175

end up with 1?” If you start with 3 marbles, you divide by 3 once to get 1,
so it takes one weighing. If you start with 9 marbles you divide by 3
twice, so it takes two weighings. Similarly, 27 marbles require three
weighings. What mathematical operation can you use to represent this
“how many times do you divide by 3 to get to 1” process?

Because multiplication and division are inverse operations, the num-
ber of times you have to divide the number of marbles by 3 before you
end up with 1 is the same as the number of times you have to multiply
by 3 (starting at 1) before you get to the number of marbles. Repeated
multiplication is expressed using exponents. If you want to express
multiplying by 3 twice, you can write 32, which is equal to 9. When you
multiply twice by 3 you get 9—it takes two weighings to find the heavy
marble among 9 marbles. In more general terms, it takes i weighings to
tind the heavy marble from among n marbles, where 3/ = n. You know
the value of n and want to calculate 7, so you need to solve this for i.

You can solve for i using logarithms, the inverse operation of exponenti-
ation. If you take log; of both sides of the preceding equation you get
i =logsn.

This works fine as long as 7 is a power of 3. However, if n isn't a power
of 3, then this equation calculates a non-integer value for i, which doesn’t
make much sense, given that it’s extremely difficult to perform a frac-
tional weighing. For example, if n = 8, as in the previous part of the prob-
lem, log; 8 is some number between 1 and 2 (1.893... to be a little more
precise). From your previous experience, you know it actually takes two
weighings when you have eight marbles. This seems to indicate that if
you calculate a fractional number of weighings you should round it up to
the nearest integer.

Does this make sense? Try applying it to n = 10 and see whether you
can justify always rounding up. logs 9 is 2, so log; 10 will be a little more
than two, or three if you round up to the nearest integer. Is that the correct
number of weighings for 10 marbles? For 10 marbles, you would start out
with two groups of 3 and one group of 4. If the heavy marble were in
either of the groups of 3, you could find it with just one more weighing,
but if it turned out to be in the group of 4 you might need as many as two
more weighings? for a total of 3, just as you calculated. In this case the
fractional weighing seems to represent a weighing that you might need to
make under some circumstances (if the heavy marble happens to be in the

2You would divide the 4 marbles into two groups of 1 and one group of 2. If the heavy marble
happened to be in the group of 2, you would need one more weighing (the third weighing) to
determine which was the heavy marble.

.~ '.w tf - "




176 Chapter 8

larger group) but not others.> Because you're trying to calculate the num-
ber of weighings needed to guarantee you’ll find the heavy marble, you
have to count that fractional weighing as a full weighing even though you
won't always perform it, so it makes sense to always round up to the
nearest integer. In programming, the function that rounds up to the near-
est integer is often called ceiling, so you might express the minimum
number of weighings needed to guarantee you'll find the heavy marble
among n marbles as ceiling(log,(n)).

This is another example of a problem designed such that the wrong
solution occurs first to most intelligent, logically thinking people. Most
people find it quite difficult to come up with the idea of using three
groups, but relatively easy to solve the problem after that leap. It’s not an
accident that this problem begins by asking you to solve the case of eight
marbles. As a power of 2, it works very cleanly for the incorrect solution,
but because it’s not a power (or multiple, for that matter) of 3 it’s a little
messy for the correct solution. People generally get the correct answer
more quickly when asked to solve the problem for nine marbles. Look out
for details like this that may steer your thinking in a particular (and often
incorrect) direction.

This problem is a relatively easy example of a whole class of tricky
problems involving weighing items with a two-pan balance. For more
practice with these, you might want to try working out the solution to the
preceding problem for a group of marbles where one marble has a differ-
ent weight, but you don’t know whether it’s heavier or lighter.

3A fractional weighing may also represent a weighing that will always be performed but won't
eliminate a full 35 of the remaining marbles. For instance, when # = 8, the fractional weighing
represents the weighing needed to determine which marble is heavier in the case where the
heavy marble is known to be in the group of two after the first weighing. In any case, it must be
counted as a full weighing, so rounding up is appropriate.



Spatial

Many brainteasers are graphical or involve spatial thinking. All the tech-
niques you’'ve used on non-graphical puzzles are still applicable, but with
these problems you have another very powerful technique available to
you: diagrams. The importance of drawing diagrams cannot be over-
stated. Consider that while humans have only been using written lan-
guage and mathematics for a few thousand years, we’ve been evolving to
analyze visual problems (for example, can that rhinoceros catch me before
I get to that tree?) for millions of years. We are generally much better
suited to solving problems presented in pictures than those presented in
text or numbers.

m Whenever possible, draw a picture.

In some cases, the actors in these brainteasers are static, but more often
they are changing or in motion. When this is the case, don’t draw just one
picture, draw many. Make a diagram for each moment in time for which
you have information. You can often gain insight by observing how the
situation changes between each of your diagrams.



178 Chapter 9

-]m- If the problem involves motion or change, draw multiple pictures
of different points in time.

Most problems are two-dimensional. Even when a problem involves
three-dimensional objects, the objects are often constrained to the same
plane, allowing you to simplify the problem to two dimensions. It’s much
easier to diagram two dimensions than three, so don’t work in three
dimensions unless you have to. If the problem is fundamentally a three-
dimensional problem, you should assess your relative abilities with draw-
ing and visualization before proceeding. If you're not very good at
drawing, your diagram of a three-dimensional problem may do more to
confuse than elucidate. On the other hand, if you're a good artist or
drafter but have trouble with visualization, you may be better off with a
diagram. Whatever approach you take, try to attack spatial problems spa-
tially, not with computation or symbolic mathematics.

m Visualization may be more appropriate than diagramming for
three-dimensional problems, but in either case, attack the problem spatially.

Problem: Boat and Dock

= You are sitting in a small boat, holding the end of a rope. The
other end of the rope is tied to the top of a nearby pier, such that it
is higher above the water than your end of the rope. You pull on
the rope, causing your boat to move toward the pier, stopping
directly underneath the pier. As you pull on the rope, which is
faster, the speed the boat moves across the water or the speed the
rope moves through your hands?

You should begin this problem by drawing a diagram, both to make
sure you understand the scenario and to get you started on the solution.
The edge of the pier, the water, and the rope form the legs of a right trian-
gle, as shown in Figure 9.1. To facilitate further discussion, these seg-
ments are labeled A, B, and C, respectively.

Here you have something familiar, but with an unusual twist. You've
probably worked with right triangles ad nauseum in your math classes,
but those are static figures—this triangle is collapsing. Be wary of this dif-
ference. Although it seems minor, it may be enough to make the wrong
answer seem intuitively correct.

Given your experience with right triangles, you may decide to attack
this problem mathematically. You need to determine whether side B or



Graphical and Spatial Puzzles

179

Figure 9.1 The boat on the water.

side C is shortened more quickly as the boat moves. Put another way, for
a given change in length of B, what is the change in length of C? How
might you calculate this? A derivative gives you the ratio of rates of
change between two variables. If you calculated the derivative of C with
respect to B and it were greater than 1, you would know that the rope was
moving faster; conversely, if it were less than 1 the boat must have moved
faster.

This is a good point to stop and consider where you've been and where
you're going. You can set up an equation relating B and C using the
Pythagorean theorem. It looks as if this method will eventually lead you
to the correct answer. If you're good at math and comfortable with calcu-
lus, this may even be the best way to proceed. The apparent need for cal-
culus, however, should serve as a warning that you may be missing an
easier way to solve the problem.

Try going back to the original diagram and taking a more graphical
approach. What other diagrams might you draw? Because you don’t
know the boat’s initial distance from the pier or how high the pier is, all
diagrams of the boat in motion are effectively equivalent. What about
when the boat stops under the pier? That would be different; for one
thing you would no longer have a triangle because the rope would be
hanging down the side of the pier (see Figure 9.2).

How far does the boat travel, and how much rope is hauled in between
the times shown in two figures? Because you aren’t given any numbers,
call the initial lengths of sides A, B, and C little 4, b, and ¢, respectively.

. /\M\./\M/\__

Figure 9.2 The boat under the pier.




180 Chapter 9

When the boat is under the pier, side B has a length of 0, so the boat has
moved through a distance of b. The rope, on the other hand, started with
a length of c. In the second diagram, a length of rope equal to a is still out
of the boat, so the total amount hauled in is ¢ — a. Because these distances
were covered in the same time, the greater distance must have been cov-
ered at a higher speed. Which is greater, then, ¢ — 4, or b? You will recall
from geometry that the sum of the lengths of two sides of a triangle must
always be greater than the length of the third.! So, for instance, a + b > c.
Subtracting a, b > ¢ —a. The boat traveled a greater distance, so it was
moving faster across the water than the speed of the rope through your
hands.

For the computationally curious, we’ll pick up the calculus where we
left it, to show that the solution can be determined using that method.
From the Pythagorean theorem, C? = A? + B2 This can be used to calculate
the derivative of C with respect to B:

C=+vA®>+B?

ac 1 _1

5 E(A2 + B*)2(2B)
B

vA? + B?

B is positive, so when A = 0, the final expression is equal to 1. When A
is greater than 0, as in this problem, the denominator is greater than the
numerator? and the expression is less than 1. This means that for a given
infinitesimal change in B, there is a smaller change in C, so the boat is
moving faster.

This problem belongs to a curious class of puzzles that seem to be more
difficult when you know more math. They are particularly devilish in
interviews. Because you expect difficult questions and you may be a little
nervous, you're unlikely to stop and ask yourself whether there’s an eas-
ier way.

One of the nastiest examples of this type of problem involves two loco-
motives, heading toward each other at 10 mph. When they are exactly 30

'If you think about this, it makes intuitive sense. Suppose one side were longer than the other
two put together. There would be no way to arrange the sides such that they met at three ver-
tices because the shorter two sides would be too short to span the distance from one end of the
long side to the other.

ZIn case you've been out of a math class for too long, the numerator is the expression above the
fraction bar and the denominator is the expression below.



Graphical and Spatial Puzzles

miles apart, a bird sitting on the front of one locomotive flies off toward
the other, traveling at 60 mph. When it reaches the other locomotive, it
immediately turns around and flies back to the first. The bird continues
like this until, sadly, it is smashed between the two locomotives as they
collide. When asked how far the bird traveled, many calculus students
will spend hours trying to set up and sum impossibly difficult infinite
series. Most younger students who have never heard of an infinite series
will instead determine that it took the locomotives 1.5 hours to close the
30 mile gap, and that in that time a bird traveling 60 mph would have
traveled 90 miles.

Problem: Counting Cubes

= [magine a cubic array made up of a 3 x 3 x 3 arrangement of
smaller cubes: the cubic array is three cubes wide, three cubes
high, and three cubes deep (see Figure 9.3). It may help to picture
a Rubik’s Cube.

How many of the cubes are on the surface of the cubic array?

This is a spatial visualization problem. Different people find different
techniques useful in visualization, so we will present a variety of
approaches in our discussion. We hope you will find at least one of them
useful. You can try to draw a diagram, but because the problem is in three
dimensions, you may find your diagram more confusing than helpful.

One way you might try to solve this problem is by counting the cubes
on each face of the array. A cube has six faces. Each face of the cubic array
has nine cubes (3 x 3), so you might conclude that there are 6 x 9 = 54
cubes on the surface. There are only 3 x 3 x 3 = 27 cubes total, so it's obvi-
ously not possible for twice that many to be on the surface. The fallacy in
this method is that some cubes are on more than one face—for instance,
the corner cubes are on three faces. Rather than try to make complicated

Figure 9.3 A 3 x 3 x 3 cubic array of cubes.



182 Chapter 9

adjustments for cubes that are on more than one face, you should look for
an easier solution.

A better way to attack this problem is to count the cubes in layers. The
array is three cubes high, so there are three layers. All the cubes on the top
layer are on the surface (nine cubes). All the cubes of the middle layer
except for the center cube are on the surface (eight cubes). Finally, all the
cubes on the bottom layer are on the surface (nine cubes). This gives a
total of 9 + 8 + 9 = 26 cubes on the surface.

The preceding method works, but perhaps a better way to find the
solution is to count the cubes that are not on the surface and then subtract
this number from the total number of cubes. Vivid, specific objects are
often easier to visualize than vague concepts—you may want to imagine
the cubes on the surface to be translucent red and the non-surface cubes
to be bright blue. We hope you will be able to see that there is only one
bright blue cube surrounded by a shell of red cubes. Because this is the
only cube that isn’t on the surface there must be 27 — 1 = 26 cubes on the
surface.

= Now imagine that you have a 4 x 4 x 4 cubic array of cubes. How
many cubes are on the surface of this array?

As the number of cubes increases, the accounting necessary for the
layer approach becomes more complicated, so try to solve this by visual-
izing and counting the cubes that are not on the surface. The non-surface
cubes form a smaller cubic array within the larger array. How many cubes
are in this smaller array? Your initial impulse may be that there are four
cubes in the array; if so, consider whether it’s possible to arrange four
cubes into a cubic array (it isn’t). The correct answer is that the non-sur-
face cubes form a 2 X 2 x 2 array of eight cubes. There are a total of 4 x 4 x
4 = 64 cubes, so there are 64 — 8 = 56 cubes on the surface.

= Generalize your solution to an n X n x n cubic array of cubes. In
terms of n, how many cubes are on the surface?

Now that you can’t explicitly count the cubes, the problem starts to get
a little more interesting. You know that there are 3 cubes total. If you can
calculate the number of cubes that aren’t on the surface, you'll also be
able to calculate the number that are. Try to visualize the situation, men-
tally coloring the surface cubes red and the interior cubes blue. What does
it look like? You should be able to see a cubic array of blue cubes sur-
rounded by a one cube-thick shell of red cubes. If you can determine the




Graphical and Spatial Puzzles

183

size of the smaller array, you can calculate the number of cubes it con-
tains. Because the smaller array fits entirely within the larger one, it must
be fewer than n cubes across, but how many fewer?

Visualize a single line of cubes running all the way through the array.
The line would be n cubes long. Because the shell of red surface cubes is
one cube thick, both the first and last cubes would be red, and all the
other cubes would be blue. This means there would be 7 — 2 blue cubes in
the row, so the array of interior cubes is n - 2 cubes across. It’s a cubic
array, so its height and depth are the same as its width. Therefore, you
can calculate that there are (n — 2)3 cubes that are not on the surface. Sub-
tracting this from the total number of cubes gives you n3 - (n - 2)3 cubes
on the surface. Test this formula using the cases you've already worked
out by hand: 33 - (3 - 2)% = 26; 43 — (4 - 2)3 = 56. It looks as if you've got the
answer for this part, but you're not done yet.

= A cube is an object that measures the same distance across in three
perpendicular directions in a three-dimensional space. A four-
dimensional hypercube is an object that measures the same dis-
tance across in four perpendicular directions in a four-
dimensional space. Calculate the number of 4D hypercubes on the
surface of an n X n x n x n hypercubic array of 4D hypercubes.

The fun really starts here. This started out as a visualization problem,
but taking it to four dimensions makes it very difficult for most people to
visualize. Visualization can still be helpful, though. You might (or might
not) find the following device useful.

People often represent time as a fourth dimension. The easiest way to
visualize time in a concrete fashion is to imagine a strip of film from a
movie. Each frame in the filmstrip represents a different time, or a differ-
ent location along the fourth dimension. In order to fully represent four
dimensions, you have to imagine that each frame consists of a full three-
dimensional space, not two-dimensional pictures as in a real filmstrip. If
you can visualize this, you can visualize four dimensions.

Because a hypercube measures the same distance in each direction, the
filmstrip representing the hypercubic array in this problem is # frames
long. In each of the frames you see an n x n x n array of cubes,? just as in
the previous part of the problem. This means there are n x n® = n* hyper-
cubes total. In terms of color, the arrays you see in the middle frames of
3 They’re actually hypercubes because their existence in the frame gives them a duration of one

frame, or a width of one unit in the time (fourth) dimension. However, it may be easier to think
of them as normal 3D cubes when trying to visualize a single frame.



184 Chapter 9

the filmstrip look just like the array from the previous part of the prob-
lem—a red shell surrounding a blue core. All the cubes in the first and
last frames are on the surface in the fourth dimension because they are at
the ends of the filmstrip. All the cubes in these frames are red. In other
words, there are  — 2 frames that have blue cubes, and each of these
frames looks like the array from the previous part of the problem. Multi-
plying the number of frames with blue cubes by the number of blue cubes
in each frame gives (n - 2)(n - 2)° = (n — 2)*, the total number of blue
hypercubes. Subtracting from the previous result yields n* — (n - 2)*
hypercubes on the surface of the hypercubic array.

m Generalize your solution to i dimensions. How many hypercubes
are there on the surface of an n X n x 7 X ... X # (i dimensions)
hypercubic array of i dimensional hypercubes?

You're almost there. At this point you may find it helpful to extend the
device you've been using for visualization into many dimensions, or you
may find it easier to dispense with visualization and solve the problem
using patterns and mathematics. We’ll examine both methods.

Visualizing a filmstrip gave you four dimensions, but there’s no reason
to limit yourself to a single filmstrip. If you imagine lining up » filmstrips
side by side, you have five dimensions: three in each frame, one given by
the frame number, and one more given by the filmstrip that holds the
frame. Each of these filmstrips would look just like the filmstrip from the
four-dimensional case, except for the rightmost and leftmost filmstrips.
These two filmstrips would be surface filmstrips in the fifth dimension, so
all of the cubes in each of their frames would be red. You can further
extend this to six dimensions by imagining a stack of multiple layers of
filmstrips. Beyond six dimensions, it again becomes difficult to visualize
the situation (you might try thinking of different tables, each holding
stacks of layers of filmstrips), but the device has served its purpose in
illustrating that dimensions are an arbitrary construction—there is noth-
ing special about objects with more than three dimensions. Each dimen-
sion you add gives you n copies of what you were visualizing before. Of
these, two of the copies are always entirely on the surface, leaving 11 -2
copies in which there are blue interior cubes. This means that with each
additional dimension, the total number of hypercubes increases by a fac-
tor of n and the number of non-surface hypercubes increases by a factor
of n - 2. You have one of each of these factors for each dimension, giving
you a final result of n’ — (n — 2)' hypercubes on the surface of the array.

p— , , W



Graphical and Spatial Puzzles

Alternatively, you might take a pattern-based approach and note that
you raised both parts of the expression to the power of 3 in the three-
dimensional case and to the power of 4 in the four-dimensional case.
From this you might deduce that the exponent represents the number of
dimensions in the problem. You might check this by trying the one- and
two-dimensional cases (a line and a square), where you would find that
your proposed solution appears to work. Thinking about it mathemati-
cally, when you have n hypercubes in each of i directions, it seems reason-
able that you would have a total of n' hypercubes; for the same reason,
raising (n - 2) to the ith power also seems to make sense. This isn’t a
proof, but it should be enough to make you confident that ni — (n — 2)i is
the right answer.

It’s interesting to look at the progression of the parts of this problem.
The first part of the problem is quite easy. Taken by itself, the last part of
the problem would seem almost impossible. Each part of the problem is
only a little more difficult than the preceding, and each part helps you
gain new insight, so by the time you reach the final part it doesn’t seem so
insurmountable. It's good to remember this technique. Solving simpler,
easier, more specific cases can give you insight into the solution of a more
difficult, general problem, even if you aren’t led through the process
explicitly as you were here.

Problem: The Fox and Duck

= A duck, pursued by a fox, escapes to the center of a perfectly circu-
lar pond. The fox cannot swim, and the duck cannot take flight
from the water (it’s a deficient duck). The fox is four times faster
than the duck. Assuming the fox and duck pursue optimum strate-
gies, is it possible for the duck to reach the edge of the pond and
fly away without being eaten? If so, how?

The most obvious strategy for the duck is to swim directly away from
where the fox is standing. The duck has to swim a distance of r to the
edge of the pond. The fox, meanwhile, has to run around half the circum-
ference of the pond, a distance of nr. Because the fox moves four times
faster than the duck, and nir < 47, it’s apparent that any duck pursuing this
strategy would soon be fox food.

Think about what this result tells you. Does it prove that the duck can’t
escape? Noj; it just shows that the duck can’t escape using this strategy. If
there weren’t anything else to this problem, it would be a trivial geometry



186 Chapter9

exercise—not worth asking in an interview. So, this result suggests the
duck can escape, you just don’t know how.

Instead of focusing on the duck, try thinking about the fox’s strategy.
The fox will run around the perimeter of the pond to stay as close to the
duck as possible. Because the shortest distance from any point in the cir-
cle to the edge lies along a radius, the fox will try to stay on the same
radius as the duck.

How can the duck make life most difficult for the fox? If the duck
swims back and forth along a radius, the fox can just sit on that radius.
The duck could try swimming back and forth across the center point of
the pond, which would keep the fox running as the duck’s radius repeat-
edly switched from one side of the pond to the other. However, consider
that each time the duck crosses the center point, he returns to the prob-
lem’s initial configuration: He is in the center and the fox is at the edge.
The duck won’t make much progress that way.

Another possibility would involve the duck swimming in a circle con-
centric with the pond, so the fox would have to keep running around the
pond to stay on the duck’s radius. When the duck is near the edge of the
pond, the fox has no trouble staying on the same radius as the duck
because they are covering approximately equal distances and the fox is
four times faster. However, as the duck moves closer to the center of the
pond, the circumference of its circle becomes smaller and smaller. At a
distance of Yr from the center of the pond, the duck’s circle is exactly four
times smaller than the circumference of the pond, so the fox is just barely
able to stay on the same radius as the duck. At any distance less than Yar
from the center, the fox has to cover more than four times the distance
that the duck does to move between two radii. That means that as the
duck circles, the fox will start to lag behind.

This strategy seems to give the duck a way to put some distance
between it and the fox. If the duck swims long enough, eventually the fox
will lag so far behind that the radius the duck is on will be 180° from the
fox; in other words, the point on the shore closest to the duck will be far-
thest from the fox. Perhaps this head start would be enough that the duck
could make a radial beeline for the shore and get there ahead of the fox.
How can the head start be maximized? When the duck’s circle has a
radius of Yir the fox just keeps pace with it, so at a radius of %47 minus
some infinitesimal amount & the duck would just barely pull ahead. Even-
tually, when it got 180° ahead of the fox, it would be %r + € from the near-
est point on the shore. The fox, however, would be half the circumference
of the pond from that point: nr. In this case, the fox would have to cover




Graphical and Spatial Puzzles 187

Starting out

Adding distance

nr
Making the escape

Figure 9.4 The duck’s escape plan.




188 Chapter 9

more than four times the distance that the duck does (37 < nr), so the duck
would be able to make it to land and fly away.

You might want to try to work out the solution to a similar problem on
your own: This time, the fox is chasing a rabbit. They are inside a circular
pen from which they cannot escape. If the rabbit can run at the same
speed as the fox, is it possible for the fox to catch the rabbit?

Problem: Burning Fuses

= You are given two fuses and a lighter. When lit, each fuse takes
exactly one hour to burn from one end to the other. The fuses do
not burn at a constant rate, though, and they are not identical. In
other words, you may make no assumptions about the relation-
ship between the length of a section of fuse and the time it has
taken or will take to burn. Two equal lengths of fuse will not nec-
essarily take the same time to burn. Using only the fuses and the
lighter, measure a period of exactly 45 minutes.

One of the difficult parts of this problem is keeping firmly in mind that
the length of a piece of fuse has nothing to do with the time it will take to
burn. Although this is stated explicitly in the problem, constant rates and
relationships between time and distance are so familiar that it can be easy
to fall into the trap of trying to somehow measure a physical length of
fuse. In fact, because the burn rate is unknown and variable, the only use-
ful measure is time. Mindful of this, you can begin to solve the problem.

The materials and actions available to you are fairly circumscribed in
this problem. In such a case, it can be useful to begin by considering all
possible actions, and then identify which of these possible actions might
be useful.

There are two locations where you can light the fuses: at an end or
somewhere that is not an end (in the middle). If you light one of the fuses
at an end, it will burn through in 60 minutes. That’s longer than the total
length of time you need to measure, so it probably isn’t directly useful. If
you light a fuse in the middle, you will end up with two flames, each
burning toward a different end of the fuse. If you were extremely lucky,
you might light the exact center (in burn time; it might not be the physical
center) of the fuse, in which case both flames would extinguish simulta-
neously after 30 minutes. It’s much more likely that you would miss the
center of the fuse, giving you one flame that went out sometime before 30
minutes and a second that continued burning for some time after. This
doesn’t seem like a very reliable way to make a measurement.



Graphical and Spatial Puzzles

When you lit the fuse in the middle, you got a different burn time than
when you lit the end. Why is this? Lighting the middle of the fuse created
two flames, so you were burning in two places at once. How else might
you use two flames? You've seen that lighting the middle of the fuse is
problematic because you don't really know where (in time) you're light-
ing. That leaves the ends of the fuse. If you light both ends of the fuse, the
flames will burn toward each other until they meet and extinguish each
other after exactly 30 minutes. This could be useful.

So far, you can measure exactly 30 minutes using one fuse. If you could
figure out how to measure 15 minutes with the other fuse, you could add
the two times to solve the problem. What would you need to measure 15
minutes? Either a 15-minute length of fuse, burning at one end; or a 30-
minute length of fuse, burning at both ends, would do the trick. Because
you're starting with a 60-minute length of fuse, this means you need to
remove either 45 or 30 minutes from the fuse. Again, this must be done by
burning because cutting the fuse would involve making a physical (dis-
tance) measurement, which would be meaningless. Forty-five minutes
could be removed by burning from both ends for 22.5 minutes or one end
for 45 minutes. Measuring 22.5 minutes seems an even harder problem
than the one you were given; if you knew how to measure 45 minutes
you’d have solved the problem, so this possibility doesn’t look particu-
larly fruitful. The other option is removing 30 minutes of fuse, which
could be done by burning from both ends for 15 minutes or one end for
30 minutes. The need to measure 15 minutes returns you to the task at
hand, but you do know how to measure 30 minutes: Exactly 30 minutes
elapse from lighting both ends of the first fuse until the flames go out. If
you light one end of the second fuse at the same moment you light both
ends of the first, then you’ll be left with 30 minutes of fuse on the second
fuse when the first fuse is gone. You can light the other end (the one that
isn’t already burning) of this second fuse as soon as the first goes out. The
two flames burning on the 30-minute length of fuse will extinguish each
other after exactly 15 minutes, giving you a total of 30 + 15 = 45 minutes.

Problem: Escaping the Train

= Two boys walking in the woods decided to take a shortcut
through a railroad tunnel. When they had walked % of the way
through the tunnel, their worst fears were realized. A train was
coming in the opposite direction, nearing the tunnel entrance. The
boys panicked and each ran for a different end of the tunnel. Both
boys ran at the same speed, 10 miles per hour. Each boy escaped




190 Chapter 9

from the tunnel just at the instant that the train would have
squashed him into the rails. Assuming the train’s speed was con-
stant, and both boys were capable of instantaneous reaction and
acceleration, how fast was the train going?

At first, this seems like a classic algebra word problem, straight out of a
high school homework set (or middle school, if you were an over-
achiever). When you go to set up your x’s and y’s, however, you'll realize
you're missing a lot of the information you would expect to have in a
standard algebra rate problem. Specifically, although you know the boys’
speeds, you don’t have any information about distances or times. Perhaps
this will be more challenging than it first appeared.

A good way to get started is by drawing a diagram using the informa-
tion you’ve been given. Call the boys Abner and Brent (A and B to their
friends). At the moment the problem begins, when the boys have just
noticed the train, the train is an unknown distance from the tunnel, head-
ing toward the boys. A and B are both in the same place, ' of the tunnel
length from the entrance closest to the train. A is running toward the train
and B away from it, as shown in Figure 9.5.

The only additional information you have is that both boys just barely
escape. Try drawing diagrams of the moments of their escapes. A is run-
ning toward the train and has only % of the tunnel to cover, so he’ll
escape before B. Because he reaches the end of the tunnel at the last possi-
ble instant, he and the train must be at the end of the tunnel at the same
time. Where would B be at this time? A and B run at the same speed; A
moves %5 of the length of the tunnel before escaping, so B must also have
run % of the length of the tunnel. That would put him % of the way from
the end of the tunnel he’s headed for, as seen in Figure 9.6.

Now diagram B’s escape. The train has come all the way through the
tunnel, and both it and B are right at the end of the tunnel. (A is some-
where outside the other end of the tunnel, counting his blessings.) This
situation is illustrated in Figure 9.7.

B A

Figure 9.5 Abner and Brent notice the train. j




Graphical and Spatial Puzzles 191

Figure 9.6 Abner escapes; Brent keeps running.

Figure 9.7 Brent escapes.

None of these diagrams seem particularly illuminating on their own.
Because you're trying to determine the speed of the train, you should
look at how it moves; how its position changes between your three dia-
grams. Between the first and second diagrams, A and B each run ¥ of the
length of the tunnel, while the train moves an unknown distance. No help
there. Between the second and third diagrams, B again runs ¥ of the tun-
nel length, while the train runs through the whole tunnel. So the train
covers three times more distance than B in the same amount of time. This
means the train must be three times as fast as B. B goes 10 miles per hour,
so the train moves at 30 miles per hour.

Don’t underestimate the power of diagrams.




Knowledge-based questions vary greatly in frequency from interview to
interview. Some interviewers will not ask knowledge-based questions
while others will focus solely on them. Interviewers often ask these ques-
tions when there is no whiteboard or paper available, such as at lunch, or
when they are satisfied with your coding ability and want to test your
general computer knowledge. These questions allow an interviewer to
assess your background and determine your computer proficiency.

Resumes

Often, these questions focus on your resume. In fact, it’s a very good idea
to review your resume prior to your interview and make sure you're pre-
pared to answer questions about every item on it. Some interviewers will
even go through your resume and ask you about each item—*“What is it?”
and “What have you done with it?” For example, if you put “ActiveX
Objects” on your resume, be prepared for the questions “What are
ActiveX objects?” and “What have you done with ActiveX objects?” If



194 Chapter 10

your best response is something along the lines of “ActiveX objects let
you do neat things with Web pages and [ haven’t done anything with
them, but I read about them once,” you should remove ActiveX objects
from your resume.

.]mn- Be prepared to answer questions about everything on your
resume.

The Questions

It would be impossible for us to cover every conceivable area of computer
knowledge that could appear on a resume or in an interview. Instead, this
chapter provides a representative sample of knowledge-based questions.
These questions focus on system-level issues, trade-offs between various
ways of programming, and advanced features of languages. All these
topic areas make sense from the interviewer’s perspective. A candidate
who claims to know a lot about computers but who isn‘t aware of basic
system-level issues such as virtual memory and disk cache certainly
doesn’t seem very knowledgeable. Furthermore, many job assignments
are not “Solve this problem by implementing this algorithm in this lan-
guage,” but may be more along the lines of “We have this problem that
we need solved.” A candidate who understands the trade-offs between
various solutions and when to use each one is always preferred to a can-
didate who does not understand these differences. Finally, these ques-
tions allow an interviewer to assess experience and filter out resume
padding. It’s unlikely that an experienced developer would have prob-
lems answering questions about advanced features in a language that he
had used in development for some time. However, an inexperienced pro-
grammer or a resume padder might stumble. These questions can help
interviewers separate the wheat from the chaff.

Interviewers prefer specific answers to general answers. For example,
suppose you are asked, “What is a CD-ROM?” One general answer is,
“It's something that can store data.” While this answer is technically cor-
rect, it doesn’t demonstrate that you really understand why it’s such a
popular medium and what its uses are. Alternatively, you could respond,
” A CD-ROM is a removable, optical, random-access data storage device.
It allows much faster data access than floppy drives and can store much
more data. True CD-ROMs can be read from, but not written to. It’s a rela-
tively inexpensive storage medium that’s the preferred choice for soft-
ware in a box. There are also recordable and rewritable CDs that are



Knowledge-Based Questions

becoming increasingly popular... ” It seems pretty clear which answer is
better.

m- Offer specific and thorough responses.

One final note: The answers presented here are researched answers that
result from many people thinking about a question and coming up with
the best answer. As a candidate hearing a question for the first time,
you are not expected to replicate such detailed solutions. Consider
these answers to be the goal, and try to get as close to these solutions as
possible.

Problem: C++ and Java

= What are the differences between C++ and Java?

C++ and Java are syntactically very similar. Java’s designers intended
this to make it easy for C++ developers to learn Java. Apart from this
area of similarity, Java and C++ differ in a variety of ways, largely
because of their different design goals. Security, portability, and rapid
development were of paramount importance in the design of Java, while
C++ is more concerned with performance and backward compatibility
with C. Java is compiled to virtual machine byte-code and requires a vir-
tual machine to run; C++ is compiled to native machine code. This usu-
ally makes C++ faster, but it gives Java greater potential for portability
and security.

C++ is a superset of C and maintains features such as programmer-
controlled memory management, pointers, and a preprocessor for full
backward compatibility with C. In contrast, Java eliminates these and
other bug-prone features. Java replaces programmer memory dealloca-
tions with garbage collection. Java further dispenses with C++ features
such as operator overloading, templates, and multiple inheritance.! These
choices make Java a better choice for rapid development and for projects
where portability and security are more important than performance.

In Java, all objects are passed by reference, whereas in C++, the default
behavior is to pass objects by value. Java does not perform automatic type
casting as C++ does. In Java, all methods are virtual, meaning the imple-
mentation for a method is selected according to the type of the object as
opposed to the type of the reference. In C++, methods must be explicitly

1A limited form of multiple inheritance can be simulated in Java using interfaces.




196 Chapter 10

declared virtual. Java has defined sizes for primitive data types while
type sizes are implementation dependent in C++.

In situations where there is legacy C code and a great need for perfor-
mance, C++ has certain benefits. In situations where portability, security,
and speed of development are emphasized, Java may be a better choice.

Problem: Including Files

m What's the difference between the preprocessor directive
#include “file.h” and #include <file.h>?

The difference has to do with where the compiler goes to look for the
requested file. When angle brackets are used, the compiler looks in a
series of standard include directories. In the quoted case, the compiler
first looks in the local directory and then checks the standard include
directories only if the file is not found in the local directory. Angle brack-
ets are generally used for standard files like stdio.h, whereas quotes are
used for modules that the programmer writes.

Problem: Storage Classes

m Explain the different storage classes in C.

Storage classes determine how long a variable is kept in memory, spec-
ify the scope of the variable, and can even hint at possible compiler opti-
mizations. There are four storage classes in C: auto, register, static,
and extern.

The most common storage class is auto. The auto keyword can be used
only inside a function. It tells the compiler that the variable is needed
only while the function is executing and that its value need not be
retained between calls to the function. Memory for auto variables is usu-
ally allocated on the stack. All local variables are auto by default, so
although auto variables are used very frequently, most programmers
omit the auto keyword.

The register keyword does the same thing as auto, except it also
hints to the compiler that the variable will be used frequently, and there-
fore it may be a good optimization to keep the variable in a register to
reduce loads and stores. Most modern compilers ignore the register
keyword because compiler tests show that most application programmers
are not very good at determining optimal register assignments.



Knowledge-Based Questions

197

static has two different meanings, depending on context. At the exter-
nal level, outside any functions, it specifies that the scope of the variable
is limited to the file it is defined in. It cannot be referenced from another
file. Inside a function definition, it means the variable should be allocated
at a fixed location in memory (instead of on the stack) so it retains its
value between function calls.

The extern storage class is used when you need to reference a variable
before it is defined or when you want to access a variable defined in a dif-
ferent file. Thus, the extern keyword allows you to declare what the vari-
ables are, but it does not create variables or allocate memory for them.

Problem: Friend Class

= Discuss friend classes in C++ and give an example of when you
would use one.

The friend keyword is applied to either a function or a class. It gives
the friend function or friend class access to the private members of the
class in which the declaration occurs. Some programmers feel this feature
violates the principles of object-oriented programming because it allows a
class to operate on another class’s private members. This violation can, in
turn, lead to unexpected bugs when a change in the internal implementa-
tion of a class causes problems with the friend class that accesses it.

In some cases, however, the benefits of a friend class outweigh its
drawbacks. For example, suppose you implemented a sophisticated
dynamic array class. Imagine that you wanted a separate class to iterate
through your array. The iterator class would probably need access to the
dynamic array class’s private members to function correctly. It would
make sense to declare the iterator as a friend to the array class. The work-
ings of the two classes are inextricably tied together already, so it probably
doesn’t make sense to enforce a meaningless separation between the two.

Problem: Class and Struct

= What is the difference between a class and a struct in C++?

To a casual programmer, this may seem like a silly question. A class
allows you to have member variables, methods, and inheritance, while a
struct seems much less sophisticated. In fact, a C++ struct can do
everything that a class can do. The difference between a class and a




198 Chapter 10

struct has to do with permissions. All members default to publicin a
struct whereas they default to private in a class.

You may wonder why there are two virtually identical constructs in
C++. There are three possible explanations: backward compatibility,
design freedom, and portability.

First, C++ has to include a struct to maintain backward compatibility
with C. A C struct already groups data, so it’s natural to add methods
and inheritance. Secondly, the C++ struct definition must always main-
tain full backward compatibility with a C struct. By making the funda-
mental object unit the class and not the struct, the C++ designers had
the freedom to set appropriate default permissions on classes without
being constrained by compatibility requirements. Finally, expansion of
the struct definition may make it easier to port code from C to C++.

Problem: Parent Class and Child Class

= Discuss the relationship between parent and child classes in C++.

There are three important aspects of the parent-child class relationship
in C++: inheritance, virtual methods, and pure virtual methods in abstract
classes.

A child class inherits all of the parent class’s non-private methods and
member variables. It can override inherited members or create new ones.
A child class can be passed as an instance of its parent class because it has
implementations for all of its parent class’s public methods and member
variables. A parent class may not be passed as an instance of a child class
because the child class may implement methods and member variables
that the parent class does not.

When a child class overrides a method from a parent class, it is usually
desirable to declare the method virtual. When an overridden method is vir-
tual, the implementation to be executed is selected according to the type of
the object on which the method is called. Otherwise, the implementation is
selected based on the type of reference or pointer used to call the method.

For example, consider the following definitions:

public class Lion

public void Roar()
PlaySound (EARTH_SHAKING_ROAR) ;

}
}

// subclass of Lion
public class Babylion : Lion {




Knowledge-Based Questions

public void Roar()
PlaySound (LITTLE_MEOW) ;

}
}

// Function that calls Roar
void MakeMovieStudioSound(Lion *leo) {
leo->Roar() ;

}

Clearly, a BabyLion is a Lion so either can be passed to MakeMovie
StudioSound. Consider the case where a pointer to a BabyLion is passed
to the function. If Roar is not a virtual method (as in the preceding code),
the computer will use the Roar implementation defined in Lion and not
the Roar method defined in BabyLion. No run-time checking is done to
see which implementation of Roar should be used.

If Roar is a virtual method, the computer will check the object’s type at
run time, see that the object is actually a BabyLion, and call the BabyLion
implementation of Roar.

This is an interesting situation because there are very few cases where a
programmer would want the behavior exhibited by a non-virtual method.
It takes longer to call a virtual method than it does to call a non-virtual
method, however, so non-virtual was left as the default in C++.

A third aspect of the relationship between parent and child classes
involves pure virtual methods and abstract classes. A pure virtual method
is a method that is not defined but is inherited by subclasses. Any class
with a pure virtual method is an abstract class and cannot be instantiated.
If the parent class is an abstract class, the child class either overrides all
pure virtual functions or is an abstract class itself. For example, assume
that you have a parent class clown that has one pure virtual method
called Juggle. You then create another class, Sadclown, which inherits
from Clown. If SadClown does not override Juggle with a definition, then
SadcClown will also be an abstract class.

Problem: Argument Passing

= Consider the following C++ function prototypes for a function,
foo, which takes an object of class Fruit as an argument.

void foo(Fruit bar); // Prototype 1
void foo(Fruit+* bar); // Prototype 2
void foo(Fruit& bar); // Prototype 3
void foo(const Fruit* bar); // Prototype 4
void foo(Fruit*& bar); // Prototype 5

TP e



200 Chapter 10

For each prototype, discuss how the argument will be passed and
what the implications would be for a function implemented using
that method of argument passing.

In the first prototype, the object argument is passed by value. This
means that Fruit’s copy constructor would be called to duplicate the
object on the stack. Within the function, bar is an object of class Fruit.
Because bar is a copy of the object that was passed to the function, any
changes made to bar will not be reflected in the original object. This is the
least efficient way to pass an object because every data member of the
object must be copied.

bar would be a pointer to a Fruit object in a function implemented for
the second prototype. This is more efficient than passing by value because
only the address of the object is copied onto the stack, not the object itself.
Because bar points at the object that was passed to foo, any changes
made through bar are reflected in the original object.

The third prototype shows bar being passed by reference. This case is
very similar to the second: It involves no copying of the object and allows
foo to operate directly on the calling function’s object. The most obvious
difference between a function using a reference and one using a pointer is
syntactic. A pointer must be explicitly dereferenced before member vari-
ables and functions can be accessed, but members can be accessed
directly using a reference. Therefore, the arrow operator (- >) is usually
used to access members when working with pointers,? while the dot
operator (.) is used for references. A subtler but more important differ-
ence is that the pointer need not point at a valid Fruit; the pointer ver-
sion of foo could be passed a NULL pointer. In the implementation using
references, however, bar is guaranteed to be a reference to a valid Fruit.

In the fourth prototype, bar is passed as a constant pointer to the
object. This has the performance advantages of passing pointers, but foo
is prevented from modifying bar. Only methods declared as const can be
called on bar from within foo. This prevents foo from modifying bar
indirectly.

In the final case, bar is a reference to a pointer to a Fruit object. As in
the second case, this means that changes made to the object will be seen
by the calling function. In addition, because bar is a reference to a
pointer, not merely a pointer, if bar is modified to point to a different

2[f you're a masochist, you can also dereference the pointer using * and then use . to access the
members. Because . binds more tightly than *, this requires parentheses: (*bar) .property = 1;.



Knowledge-Based Questions

201

Fruit object, the pointer passed from the calling function will be modi-
fied as well.

Problem: Macros and Inline Functions

= Compare and contrast macros and inline functions in C++.

Macros are implemented with simple text replacement in the pre-
processor. For example, you could define the macro:

#define AVERAGE(a, b) ({(a + b) / 2)

Then, the preprocessor replaces any occurrences of AVERAGE (foo,
bar) in your code with ((foo + bar) / 2).Macros are commonly used
in places where the thing that you're substituting is ugly and common
enough that it warrants abstraction behind a pretty name, but too simple
to be worth the overhead of a function call.

Inline functions are declared and defined much like regular functions.
Unlike macros, they are handled by the compiler directly. An inline func-
tion implementation of the AVERAGE macro would look like:3

inline int Average(int a, int b)

{

}

From the programmer’s perspective, calling an inline function is like
calling a regular function. However, when the compiler encounters a call
to an inline function, instead of generating a function call, it writes a copy
of the compiled function definition.

Both inline functions and macros provide a way to eliminate function
call overhead at the expense of program size. While inline functions have
the semantics of a function call, macros have the semantics of text replace-
ment. This can create bugs due to the unexpected behavior of macros.

For example, suppose you had the following macro and code:

return (a + b)/2;

#define CUBE(x) x * x * x

int foo, bar = 2;
foo = CUBE(++bar);

3Member functions (methods) can be implicitly declared inline by including their definition in
the class definition. Note that the argument and return types must be specified for an inline
function, which is not necessary for the macro. Some degree of type flexibility can be regained
using templates, but that goes significantly beyond the scope of this problem.




202 Chapter 10

You would probably expect this code to set bar to 3 and foo to 27, but
look at how it expands:

foo = ++bar * ++bar * ++bar;

So instead, bar is set to 5 and foo is set to 60. If cube were implemented
as an inline function, this problem wouldn’t occur. Inline functions (like
normal functions) evaluate their arguments only once, so any side effects
of evaluation happen only once.

Here’s another problem that stems from using macros. Suppose you
have a macro with two statements in it like this:

#define INCREMENT BOTH(X, Yy) X++; Y++

If you favor leaving off the curly brackets when there’s only one state-
ment in the body of an if statement, you might write something like
this:

if (flag)

INCREMENT_ BOTH (foo, bar);

You would probably expect this to be equivalent to:

if (flag) {
foo++;

bar++;

}

Instead, when the macro is expanded, the i £ binds to just the first
statement in the macro definition, leaving you with code equivalent to:

if (flag) {

foo++;

}

bar++;

An inline function call is a single statement, regardless of how many
statements there are in the body, so this problem would not occur.

A final reason to avoid macros is that when you use them, the code that
is compiled is not visible in the source. This makes debugging macro-
related problems particularly difficult. In general it’s a good idea to avoid
macros and opt for inline functions.

Problem: Inheritance
= Assume you have the class hierarchy shown in Figure 10.1.

You are given a method that takes a B* as an argument. Which of
the classes can you pass to the method?




Knowledge-Based Questions

203

B/ \D
/

C
Figure 10.1 Sample class hierarchy.

Clearly, you can pass B because that’s exactly what the method takes.
Also, you can’t possibly pass D because it may have totally different char-
acteristics than B. A is the parent class of B. Consider that a child class is
required to implement all of the methods of the parent, but the parent
does not necessarily have all of the methods of a child. Thus, the parent
class, A, cannot be passed to the method. C is the child class of B and is
guaranteed to have all of the methods of B, so you can pass C to the
method.

Problem: Object-Oriented Programming

= What are the advantages of object-oriented programming over
non-object-oriented programming?

Object-oriented programming’s (OOP) most obvious advantage is that
it provides an excellent way to model the real world by associating data
to the methods operating on them. This is accomplished by preventing
direct access to member variables from outside the class and retaining the
values of the member variable throughout the life of the object. Parts of
the program outside the class may work with the member variables only
through methods that allow the caller to retrieve and modify the data.
This makes it easy to segregate various parts of a program, and it can
make large projects more manageable by hiding disparate parts of a pro-
ject from one another.

These benefits, however, can be achieved in non-object-oriented pro-
gramming using modules or a similar construct. For example, in C, it is
common to use constructs known as abstract data types (ADTs). These are
modules associating data to the functions operating on them and allowing
a caller to retrieve and modify the data. This association is accomplished
by defining an ADT that is a pointer to a struct of values. These values
are equivalent to the member variables in OOP. All functions that access

the data require this ADT as an argument. In this manner, it is possible to B




204 Chapter 10

bind data and functions. While this is less elegant than using the class con-
struct in C++ or Java, it can be used to obtain the same advantages.

The truly unique benefit of OOP is inheritance. It is generally not possi-
ble to use inheritance in non-object-oriented languages. Inheritance is
extremely important because it makes large libraries more manageable
and encourages code reuse. While large, useful libraries have been
around since the dawn of programming, inheritance makes them easier to
use. Inheritance gives programmers an easy way to modify or tailor a
library to their needs without having to modify the library code. Finally,
inheritance allows programmers doing similar or repetitive tasks to
inherit common functionality from a base class. This code reuse leads to
faster development. Inheritance makes OOP a better way to program.

Problem: Thread Programming Issues

= Discuss some problems that can result from incorrect thread
programming.

Some problems resulting from incorrect thread programming are race
conditions, deadlock, livelock, busy waiting, and over-locking.

A race condition happens when threads are not correctly synchronized.
Race conditions often occur when two threads are accessing and updating a
global variable at the same time. For example, consider the case where two
threads simply increment a global variable that initially has the value 5.

Incrementing often requires three operations in machine code: a load,
an addition, and a store. If the first thread does a load, obtains the value 5,
and then gets swapped out, the second thread might also do the load,
obtain the value 5, add 1, and then store the value as 6. Then, the control
would return to the first thread that obtained the value 5; the first thread
would do the addition and also store the value as 6. Thus, even though
the global variable was incremented twice, the result is incorrectly 6 and
not 7 because of poor thread synchronization.

Deadlock means two (or more) threads cannot move because each one
is waiting on a lock the other one is holding. For example, thread A is
holding one lock and waiting on another lock held by thread B. At the
same time, thread B is waiting on the lock thread A is holding. Thus, nei-
ther thread will be able to run and the threads are in a state of deadlock.
This is a very serious issue because it causes the program to halt.

Livelock results from deadlock. Some machines have mechanisms to
detect deadlock. Often, to resolve deadlock, all the threads drop all their
locks and try to move forward. It is possible, though, that after the locks

[ e




Knowledge-Based Questions

205

are dropped, the threads may run through the same code that produced
the initial deadlock and end up in deadlock again. This process of reach-
ing deadlock, dropping locks, and returning to deadlock is called livelock.
Even though the threads are not in deadlock, they have stopped accom-
plishing their tasks.

Busy waiting is a thread problem that doesn’t stop the program from
working correctly but affects performance. It occurs when a thread wakes
up, realizes it needs to wait on a resource, and continues to check the
resource until it is swapped out. This is a problem because nothing useful
happens while a thread is continually checking the same thing. The effi-
ciency a program gains by using threads can be lost in busy waiting.
Threads waiting on a resource should sleep until the resource becomes
available. This avoids busy waiting.

Over-locking is another problem that affects performance. Consider the
following code:

wait (semaphore) ;

/* value is a global variable that needs to have its access
* synchronized.
*/

value++;

/* lots of time consuming stuff that doesn’t have to be
* synchronized

*/
VAN Y
signal (semaphore) ;

While this code will run correctly, it unnecessarily locks resources. It
forces time-consuming code to be run serially when it doesn’t need to be.
This can create severe performance problems that eliminate the advan-
tages usually gained by using threads.

Problem: Garbage Collection

m Discuss garbage collection and explain the different ways that it is
implemented in Perl and Java.

Garbage collection is the process by which a program automatically
deallocates memory. This reclamation occurs without programmer assis-

tance. Java, Lisp, and Perl are examples of languages with garbage collec-
tion facilities.




206 Chapter 10

There are several major advantages of garbage collection over the
lower-level method of having programmers deallocate memory. First,
garbage collection eliminates bugs resulting from the common problems
of dangling pointers and memory leaks. Garbage collection also promotes
greater simplicity in program and interface design because the compli-
cated mechanisms traditionally used to ensure that memory is properly
freed are unnecessary. Because the task of memory deallocation is
removed from the programmer, development in garbage-collected lan-
guages is often more rapid than in languages with traditional memory
management schemes.

Garbage collection suffers from the major problem of efficiency.
Garbage-collected programs often run more slowly because of the over-
head needed for the system to determine when to deallocate and reclaim
memory no longer needed. Additionally, the system will occasionally
over-allocate memory and may not free memory at the earliest possible
time. Therefore, in applications where speed is important and memory is
at a minimum, garbage-collected languages are rarely used.

Perl and Java have very different garbage collection implementations.
Perl uses a scheme called reference counting. This involves allocating
memory for every object as necessary and keeping track of how many
variables reference that object. Initially, there will be one reference to a
piece of memory. The reference count will increase if the variable refer-
encing it is copied. When a variable referencing an object changes value
or goes out of scope, Perl decrements the object’s reference count. If a ref-
erence count ever goes to 0, Perl frees the memory associated with the
object. Because it is not possible to access the memory anymore, the mem-
ory is no longer needed.

Reference counting is simple and relatively fast. However, it misses the
case of a circular reference. Consider what happens in the case of a circu-
lar linked list with nothing external pointing to it. Every element has a
reference count of 1, yet the memory can never be referenced. Thus, the
memory should be deallocated, but Perl’s garbage collection will not
deallocate it. A Perl programmer has to be careful to break circular refer-
ences before losing the last external reference to a circular data structure.

Java’s garbage collection scheme is in a sense more complete than Perl’s.
There are no special cases a programmer has to be aware of. Java uses a
mark and sweep process. This means that occasionally the memory man-
ager will mark all memory that can be accessed at that moment. Then, a
second pass sweeps up, or deallocates, everything that is not marked.

This implementation has the advantage that the programmer doesn’t
have to watch out for circularly linked structures as in Perl, but it is often

B— , , |




Knowledge-Based Questions

207

less efficient. It can also lead to an unpredictable memory deallocation
because the mark and sweep may not occur at the same point in each pro-
gram execution.

Problem: 32-Bit Operating System

= Windows NT is a 32-bit operating system (OS). What does it mean
to be a 32-bit OS?

A 32-bit OS runs on at least a 32-bit processor and generally makes a
flat, 32-bit virtual address space available to programs. Programs running
on a 32-bit OS will generally use 32 bits as their fundamental word size.
For instance, an integer will be a 32-bit value rather than a 16-bit value.
The term “32-bit OS” has also come to imply a variety of technologies,
such as preemptive multitasking and process isolation, that are common
to most 32-bit operating systems but not necessarily inherent to a 32-bit
operating system.

Problem: Network Performance

= What are the two major issues in networking performance?

Any network can be measured by two major characteristics: latency
and bandwidth. Latency refers to how long it takes a given bit of informa-
tion to get through the network. Bandwidth refers to the rate at which
data moves through the network once communication is established. The
perfect network would have infinite bandwidth and no latency.

A pipe is a good analog for a network. The time it takes for a molecule
of water to go through the whole pipe is determined by the length; this is
analogous to the latency. The width of the pipe determines the band-
width: how much water can pass in a given time.

Latency and bandwidth problems are often encountered when search-
ing the Web. If you wait a long time for a page to display and then it
appears quickly, this indicates good bandwidth but high latency. On the
other hand, if a page starts loading right away but takes a long time to
load, that is a symptom of a low-latency, low-bandwidth connection.

Problem: Faster Disk Access

= Assume your boss tells you that a section of your code runs too
slowly and is significantly slowing down the entire product. You

have to ?l_¢ your section of code run faster. Specifically, your -




208 Chapter 10

code retrieves certain information from the hard drive, and the
repeated hard drive accesses are the slow part of the code. It is not
possible to forgo retrieving this information. Additionally, you
cannot physically speed up the time it takes to read from the hard
drive by installing a faster hard drive, faster bus, or more efficient
file system. What method can you use to solve this problem?

At first, this doesn’t seem possible. It's like being asked to drive 80
miles per hour when your car only goes 60. It's important to realize what
information the interviewer is trying to determine. Because you're not
given any specifics, your answer won’t have to be very specific. The inter-
viewer is interested in your ability to take a specific problem and general-
ize. In this vein, try rephrasing the question as this: What is a generic
technique to speed up hard drive accesses?

This question is simpler. The common technique is called disk caching.
This means a certain amount of main memory stores recently accessed
hard drive blocks. Before any hard drive block is accessed, the computer
first checks to see if the block is in the cache. If the block is in the cache,
the information is retrieved from memory, which is much faster than the
disk. Otherwise, the computer fetches the block from the hard drive.
Whenever a block must be read from the disk, that block and the neigh-
boring blocks are stored in the cache. The cache can store only a small
portion of the hard drive in main memory. People often repeatedly access
the same blocks, so this technique can speed up hard drive accesses con-
siderably in some cases.

The only possible answer to your boss’s question is to use disk cache;
this is not a perfect solution. Generally, disk caching is dealt with on a
lower OS level and not on the application level because an application-
level disk caching is potentially buggy. For example, if a separate user
program wrote to a disk block that you had cached, it would have to
notify your program of this event, or else your cache would have old
information. Also, it is unclear whether disk cache would help solve this
problem because you are not given the hard drive access patterns. Thus,
this answer has its problems. Even so, given the constraints of the prob-
lem, it’s the only possible solution.

Problem: Database Advantages

= What is the advantage of storing information in a database as
opposed to implementing your own data storage system? What are
the disadvantages?

— . ——




Knowledge-Based Questions

209

If you use a database, you can more easily expand functionality,
increase maintainability, and reduce bugs. Databases can do a lot in terms
of analysis, backup, and queries. Databases are also generally easier to
maintain than custom-coded data stores. Anyone who understands how
to use the database can (in theory) easily take over your code and con-
tinue development.

On the down side, databases are often expensive (though there are
some free ones) and may tie you into the product offerings of a certain
vendor. There is also usually a lot of overhead to get data in and out of a
database. If you don’t need the extensive searching, indexing, and rela-
tional facilities of a database, you may be needlessly sacrificing perfor-
mance. Additionally, databases may be overkill for small projects and
may distract attention from the project’s core goals.

Problem: Cryptography

= Discuss the differences between symmetric key cryptography and
public key cryptography. Give an example of when you would use
each.

Symmetric key cryptography, also called shared key cryptography,
involves two people using the same key to encrypt and decrypt informa-
tion. Public key cryptography makes use of two different keys: a public
key for encryption and a private key for decryption. Symmetric key cryp-
tography has the advantage that it’s much faster than public key cryptog-
raphy. It is also generally easier to implement, less likely to involve
patented algorithms, and usually requires less processing power. On the
down side, the two parties sending messages must agree on the same pri-
vate key before securely transmitting information. This is often inconve-
nient or even impossible. If the two parties are geographically separated,
a secure means of communication is needed for one to tell the other what
the key will be. In a pure symmetric key scenario, secure communication
is generally not available. If it were, there would be little need for encryp-
tion to create another secure channel.

Public key cryptography has the advantage that the public key, used for
encryption, does not need to be kept secret for encrypted messages to
remain secure. This means public keys can be transmitted over insecure
channels. Often, people use public key cryptography to establish a shared
session key and then communicate via symmetric key cryptography using
the shared session key. This solution provides the convenience of public
key cryptography with the performance of shared key cryptography.



210 Chapter 10

Both public key and symmetric key cryptography are used to get secure
information from the Web. First, your browser establishes a shared ses-
sion key with the Web site using public key cryptography. Then you com-
municate with the Web site using symmetric key cryptography to actually
obtain the private information.

Problem: New Cryptography Algorithms

= If you discover a new cryptography algorithm, should you use it
immediately?

This is not a trick question, but goes to the heart of modern cryptogra-
phy. Basically, no algorithm stays secret for long, and almost every algo-
rithm has at least minor bugs in it or in its implementation. It’s virtually
impossible to hide an algorithm given the number of people who develop
it and know about it and the advanced techniques used by today’s best
crackers. If your security is based on the secrecy of your algorithm, you
have what is called “security by obscurity,” which is effectively no secu-
rity at all. It's very likely that a determined cracker could discover your
algorithm. This can render your security worse than useless because you
think you have security when, in fact, you have none.

Thus, it’s best to make any algorithm public from the beginning and
flush out the bugs rather than keep it secret and have lots of security
problems when it is discovered. Only keys should be kept secret. If, after
extensive public review and discussion, your algorithm is accepted as
secure, then you can probably securely use the algorithm.

Problem: Hashtables and Binary
Search Trees

= Compare and contrast a hashtable and a binary search tree. If you
were designing the address book data structure for a handheld
personal organizer with limited memory, like a Palm Pilot, which
one would you use?

A hashtable does one thing well. It can store and retrieve data quickly
(in O(1) or constant time). However, it’s uses beyond this are limited.

Abinary search tree can insert and retrieve in O(log(n)). This is fast,
though not as fast as a hashtable’s O(1). A binary search tree, however,
also maintains its data in sorted order.



Knowledge-Based Questions

211

In a handheld personal organizer, you want to keep as much memory
as possible available for data storage. If you use an unordered data struc-
ture like a hashtable, you need additional memory to sort the values, as
you undoubtedly want to display the values in alphabetical order. So, if
you use a hashtable, you have to set aside memory for sorting that could
otherwise be used as storage space.

If you use a binary search tree, you won't have to waste memory or
processing time on sorting records for display. Although binary tree oper-
ations are slower than hashtable operations, a device like this is likely to
have no more than about 10,000 entries, so a binary search tree’s O(log(n))
lookup will undoubtedly be fast enough. For these reasons, a binary
search tree is more suited for this kind of task than a hashtable.




Non-Technical Questions

Most technical interviews include some non-technical questions. These
questions are often asked early in the interview process to determine if
your experience and goals make you appropriate for the available job.
Many interviewers also ask non-technical questions to get to know you
because you may be spending more than 40 hours a week together.

In a traditional interview, all the questions are non-technical and your
interviewer decides about you based on your answers to these questions.
In a technical interview, you have to do well on the technical questions to
get an offer. No one will give you a job on the strength of your non-tech-
nical answers alone, but a poor performance on non-technical issues can
lose you an offer you otherwise might have had.

Non-technical questions may seem like the easy questions, especially
after rounds of challenging technical questions. In the big picture, how-
ever, non-technical questions are just as difficult and important as techni-
cal questions, so avoid the temptation to blow them off.

m Non-technical questions are important! Treat them that way.




214 Chapter 11

The Questions

In spite of their simple nature, non-technical questions can be challenging
because there are no right or wrong answers. Answers are unique to each
person, and different interviewers may expect different answers. Much
has been written on how to answer non-technical questions effectively.
Many authors even provide canned answers to canned questions and dis-
cuss how to lean in toward your interviewer and nod at the appropriate
times.

Rather than rehash details of what is now a tired topic, this chapter
focuses on a few non-technical questions that are particularly common in
technical interviews.

Non-technical questions are generally designed to assess a candidate’s
experience and ability to fit in with other employees. Experience includes
your work history and knowledge base. For example, even if you answer
all of the technical questions perfectly, you may not seem like the ideal
candidate if the job isn’t consistent with your previous experience. There-
fore, be careful when answering questions about your experience. Experi-
ence questions often indicate that the interviewer doubts that you are
capable of doing the job. It's important for you to allay any fears that your
experience is lacking. For example, suppose you're asked the question,
“Have you ever used Solaris?” Your interviewer has seen your resume, so
he probably has a pretty good idea that you haven't. In effect, what the
interviewer is really asking is “We're using Solaris—will you be able to do
the job even though you’ve never used it?” Don’t answer the question,
“No.” Instead, emphasize a similar strength. For example, you could
respond, “I haven’t used Solaris, but I have used lots of development
tools on lots of different operating systems, and so I'm never concerned
about using a new OS. I'm an OS-independent developer.” Pay attention
to the job description when it's explained to you. Emphasize any similar
and relevant experience that makes you a strong candidate.

Fit is the other key theme of non-technical questions. Fit refers to how
well you will adapt to the organization and become a contributing mem-
ber. Most people think this just means being a nice person, but that is only
half the picture. It’s also important to be good at working with others. For
example, suppose you say something like “At my last job, I designed and
implemented a system to move our HR information gathering to the Web
all by myself.” This may sound like a positive comment about yourself,
but it can set off alarms about whether you can and will work with other
people. Therefore, it's important to emphasize the team concept. Describe

[ o—— ! T » Id" ,




Non-Technical Questions

215

how you want to be part of a great team and a contributing team player.
Everyone likes hearing the word team—everyone.

m Most non-technical questions are designed to make sure that
you have relevant experience and can fit in with the existing team.

When reading the sample questions and following discussions, try to
come up with a sample answer yourself. Think of how you would
respond to such a question and what points you would want to empha-
size in different situations. It’s much easier to think of an answer now
than when you're in front of an interviewer. Don’t be afraid to refine your
response if you find that it isn’t effective. Finally, make sure that every
response positions you as a valuable employee.

Question: What do you want to do?

Always pay attention to who is asking this question. If it’s a human
resource representative scheduling interviews, be honest and tell him
what you want to do. The HR rep will generally use this information to
set up interviews with appropriate groups.

If you're asked this question by a more technical interviewer, watch
out! If you answer this question poorly, you won’t get an offer. These
interviewers ask this question partly because they want to find out about
your goals and ambitions. If you want to do something different from the
job that is available, your interviewer will probably decide that you
should look for a different job. So if you want the job, make sure you indi-
cate that you're interested in doing it, sound sincere, and give a reason.
For example, you could say, “I've always been interested in systems-level
programming and really enjoy it, so I'm looking to join a large company
and do systems-level work.” Or, you could say, “I want to do Web pro-
gramming so I can show my work to my friends. I'm hoping to do this at
a start-up where I can use my Web server experience and watch the com-
pany grow.”

Sometimes, you may not be sure what specific kind of job you're inter-
viewing for. In these cases, you can always fall back on describing the
company you're applying to as the ideal company for you. Mention that
you're hoping to do development that’s exciting and provides lots of
opportunity to contribute and learn. You can say that you see the work as
just one part of the package; other important parts are the team and the
company. This sort of response shows that you have your act together
and prevents you from talking your way out of a job.




216 Chapter 1l

There is a fine line between sounding enthusiastic and seeming dateless
and desperate. No one wants an employee who has been rejected by
everyone else. Make sure your answer never sounds like, “I'd take any
sort of job you’'d be willing to offer.” This sort of response virtually guar-
antees nothing more than a “thank you for coming in” letter.

It’s also possible that you know exactly what you want to do and
wouldn’t accept any other kind of job. If so, don’t talk yourself up for a
job you'd never accept. This approach may prevent you from getting
some job offers, but they aren’t jobs that you want anyway. One advan-
tage to expressing exactly what you want to do is that even if you don’t
begin the day interviewing with an interesting group, you may end the
day interviewing with such a group.

One final note on answering this question: It is a good opportunity to
mention that you want to work with a great team—don’t pass it up.
Make sure being a member of a great team comes across as one of your
priorities.

Question: What is your favorite
programming language?

This may seem like a technical question, and there are certainly technical
aspects to it. You want to give specific, technical reasons why you like any
language that you mention. There is also a hidden non-technical agenda
in this question. Many people develop almost religious attachment to cer-
tain languages, computers, or operating systems. These people can be dif-
ficult to work with because they often insist on using their favorites even
when they are ill suited to the problem at hand. You should be careful to
avoid coming across as such a person. Acknowledge that there are some
tasks for which your favorite language is a poor choice. Mention that you
are familiar with a range of languages and believe that no one language is
a universal solution. It’s important to pick the best tool for the job.

This advice holds for other “favorites” questions: for instance, “What is
your favorite kind of computer?” or “What is your favorite operating
system?”

Question: What is your work style?

This question usually indicates that the company that you're interviewing
with has an unorthodox work style. For example, it may be a start-up
requiring long hours in cramped conditions or a larger company that’s

h’ ” T— ) . ) )




Non-Technical Questions

217

just beginning a new project. In any case, know what your work style is
and make sure it’s compatible with the company.

Question: Tell me about your
experience.

This question is one everyone should practice and have an answer for it.
We cannot over-emphasize this! Make sure your answer highlights spe-
cific achievements and be enthusiastic as you talk about your projects.
Talk not only about the factual aspects of your previous assignments, but
also about what you learned. Talk about what went right, but also what
went wrong. Describe positive and negative experiences and what you
learned from each of them. Keep your response to around 30-60 seconds,
depending on your experience. Again, be sure to practice this ahead of
time.

Question: What are your
career goals?

This question gives you a chance to explain why you want this job (apart
from the money) and how you see it fitting into your overall career. This
is similar to the question about what you want to do. The employer is
concerned that you may not want to do the job. In this case, it is because
the job may not fit into your career goals. It's certainly OK to be confused
about what you want to do; lots of people are. Try to have at least a gen-
eral idea of where you see yourself going. Your answer might be as sim-
ple as, “I'm hoping to work in development for a while and work on
some great projects. Then, I'm looking to go into project management.
Beyond that, it’s hard to say.” This answer shows motivation and also
convinces the employer that you'll succeed on the job.

Question: Why are you looking to
change jobs?

Interviewers generally want to know what you don't like to do. Clearly,
you don’t like your last job or you would probably still be there. Also,
there’s a fear that you may be trying to cover a weakness that caused you
to leave your last job. Therefore, try to answer this question by citing
either a change in environment, a factor out of your control, or a weak-
ness that the interviewer already knows. For example, to cite a change in




218 Chapter 11

environment you could say, “I've worked in a large company for five
years and seen software development. I no longer want to be a number in
a large company. I want to join a start-up and be a key person from the
ground up and watch something grow.” Or, you could answer, “I worked
at a start-up that didn’t have its act together. Now I want to work at a
company that does.”

To cite a factor out of your control, you could say, “My current com-
pany has given up on the project I've been working on and they’re trying
to relocate me to something that I don’t find interesting.” Or, you could
respond, “My company was acquired, and the whole atmosphere has
changed since then.”

It’s also generally acceptable to cite a weakness that the interviewer
already knows. You could say, “My last job required extensive systems-
level programming. I was way behind everyone else on that topic, and I
don’t find that sort of work very exciting. I'm much more interested in
doing Web programming, which I do have experience in.”

One final note: Even though money is often a good reason to change
jobs, be careful about citing it as a prime reason. This raises the possibility
that your current employer doesn’t offer you more money because you're
not that valuable and you’re hoping someone else won’t notice this fact.

Question: How much money do you
want to make?

This question may appear in any context. It's most common, though,
either at the initial screening or when the company has decided to make
you an offer. If it’s asked at the beginning, the employer may want to
know if it's even worth talking to you, given your salary expectations, or
the employer may genuinely have no idea what the position should pay.
It is generally considered wise to put this question off as long as possible.
It is not in your interest to discuss numbers until you've convinced the
employer of your value. If you can’t escape this question in the early
stages of an interview, try to give a range of salaries with the amount that
you want at the low end. This gives you good bargaining room later.

If you're asked the question near the end of the process, this can only
indicate good things. If this interviewer has no interest in hiring you at
this point, he won’t bother asking this question. Generally, larger compa-
nies have less latitude in compensation packages than smaller companies.
If you're asked this question, it probably indicates the company is willing
to negotiate. It’s important to realize companies are often unaware of how

- ) _ — N



Non-Technical Questions

219

to make a competitive offer. This is your chance to tell them how to do
exactly that.

First, it’s important to do your homework ahead of time when answer-
ing this question. If you find that people with similar jobs in your area are
making $40,000-$55,000 a year, you're probably not going to make
$80,000 a year. Second, never undersell yourself. If you're looking for an
annual salary of $70,000, don’t tell an employer that you're looking for
around $60,000 a year with the hope that the employer will, for some rea-
son, offer more. This response makes it almost impossible for the
employer to make a good offer. Third, you should consider what you
want in a total compensation package. You may be graduating from col-
lege and want a signing bonus to offset the costs of finding an apartment,
moving, and placing deposits. Or, you may be looking to join a start-up
offering generous stock options and slightly lower salaries. In any case,
it’s important to figure out exactly what you’re looking for in terms of
bonuses, benefits, stock options, and salaries.

In general, try not to tip your hand too early when answering this ques-
tion. The person with more information generally does better in a negoti-
ation. Instead of answering a question about salary directly, ask what
range the interviewer is expecting to offer. He will answer in one of four
ways.

First, the range may be about what you expected. In this case, you can
usually gain a slightly higher salary by following these rules. First, try not
to act too excited—stay cool. Next, say that you had a similar but slightly
higher range in mind, setting your minimum at his maximum. For exam-
ple, if your employer says, “We’'re expecting to pay $40,000 to $45,000,”
you should respond, “That seems about right. I'm looking to make
$45,000 to $50,000 and hoping for the high end of that range.” Finally,
negotiate in a professional manner until you agree on a number with him;
you'll probably receive an offer between $43,000 and $48,000.

The second possibility is that the negotiator starts with a range higher
than you expected. This is great!

The third case is that the negotiator may not answer your question. He
may give a response like “We have a wide range of salaries depending on
the applicant. What were you expecting?” This response is actually quite
favorable because it indicates that he probably has the authority to pay
you a competitive salary. The response shows that the negotiator is will-
ing to negotiate, but it also indicates that you may be subject to some
hardball negotiating skills. Bearing in mind that negotiation will follow,
respond with one number, the high end of your range. This gives you




220 Chapter 11

room to negotiate and still receive a favorable offer. For example, if you're
expecting between $55,000 and $60,000, say, “I'm expecting $60,000 a
year.” Presenting it like this leaves the other negotiator less room to low-
ball you than if you give a range. Avoid weaker expressions like “I'm
hoping for .. .” or “I'd really like . . .” The negotiator may accept your
number, or he may try to negotiate a slightly lower salary. If you remain
professional and negotiate carefully, your final salary should fall within
your desired range. Alternatively, the negotiator may respond by telling
you that he had a substantially lower range in mind. In this case, your
response should be the same as in option four, which is described next.

The fourth option is that the offer may be less than you expected. In
these cases, here are some tactics to try to increase the offer. First, reem-
phasize your skills and state the salary range you were expecting. For
example, if you were offered a salary of $35,000 but were expecting
$50,000, you may say, “I have to admit I'm a little disappointed with that
offer. Given my extensive experience with Web development and the con-
tributions I can make to this company, I'm expecting a salary of $50,000.”
The negotiator may need time to get back to you, which is perfectly fine.
If the negotiator doesn’t increase the offer after hearing your range, he
will often cite one of the following three reasons:

1. That amount wasn’t budgeted.
2. Similar employees at the company don’t make that much.

3. Your experience doesn’t warrant such a salary.

None of these is an acceptable reason. First, the budget may be a con-
straint on the company, but it shouldn’t be a constraint on your salary. If
the company really wants you, it will find the money and a way around
this artificial barrier. If the company truly can’t find the money, it's such a
cash-strapped, close-to-death organization that you probably don’t want
to work there anyway.

Second, it doesn’t matter what the company pays other employees.
That’s between the company and those employees. Other employees
shouldn’t determine your compensation. You can respond by saying, “I
wasn’t aware that my compensation would be tied to other employees’
compensations. I'm looking for a package that is commensurate with my
skills of X and believe that $Y is such a package.”

Finally, if you’ve done your homework, you know your experience and
skills do warrant such a salary and the company is trying to lowball you.
Simply reemphasize your skills and explain that, after doing your
research, you know your desired salary is indeed the competitive market




Non-Technical Questions

221

salary. The company may realize it is out of touch with the market and
increase its offer.

If the negotiator does not increase the offer but you still want the job,
you have two last-ditch tactics. First, you can say that you're tempted to
take the job, but that you’'d like a salary review in six months to discuss
your performance and compensation. You generally have a much
stronger hand before you join a company, so you shouldn’t expect mira-
cles. Most negotiators, however, will grant this request. Make sure you
get it in writing if you go this route. Second, try to negotiate other parts of
the package. For example, you may be able to get additional vacation
days, flex hours, or a sign-on bonus.

Here are a few final thoughts on the salary issue. Some people are
embarrassed or shy about talking about salary. You should realize that
you're already looking to engage in a business relationship, and salary
is just one more part of the picture. No employer expects you to work
for free, and there’s no reason you should act as if compensation isn’t
important.

Many negotiators will cite factors like benefits or work style to draw
you to a company. These factors may be important reasons to join a com-
pany, and you’d certainly want all of the benefits spelled out. These
perks, though, are generally not negotiable. Don’t bother discussing non-
negotiable factors in a negotiation, and don’t get sidetracked if your nego-
tiator mentions them.

Question: What is your salary history?

This is a different question than what are you expecting to make. In this
case, the negotiator wants to know your previous salary—most likely to
use this as a guide to determine your offer. If this question is raised
(unless you were very happy with your previous salary), say that you
expect compensation appropriate for the new job and responsibilities and
that the compensation that you received for a different set of tasks isn’t
relevant. Also, resist any temptation to inflate your old salary because
you may be asked to back up any claim with pay stubs or other proof.

Question: Why should we hire you?

This question is obnoxious, rude, and belittling. It implies that there’s no
obvious reason why you’re qualified for this job. Clearly, you have skills
and experience that make you qualified; otherwise, the interviewer

wouldn’t be talking to you. In these instances, avoid becoming defensive




222 Chapter 11

and reciting your resume to list your qualifications. Instead, keep things
positive by talking about why you want to work at the company and why
the job is a good match for your skills. This response shows you can han-
dle criticism and may deflect your interviewer.

Question: Do you have any questions
for me?

Conventional wisdom has always said to ask a question because it shows
enthusiasm. Nothing spoils a good interview, though, like asking a stupid
question right at the end. Asking a contrived question just because you
feel you should won’t count in your favor. A thoughtful and articulate
question can tell you a lot about the company and impress your inter-
viewer. Often, your interviewer doesn’t tell you what he does. This is a
good time to ask him . This lets you know more about what you would
potentially be doing and shows genuine interest in the person. Also, if the
interviewer mentioned anything during the interview that sounded inter-
esting, ask him to go into more detail about it. This can yield further
insight into your potential future employer. Finally, if you don’t have
questions, you can make a joke of it. You could say, “Gee, I know that I'm
supposed to ask a question, but the people I interviewed with this morn-
ing answered all my questions. I guess you're off the hook!”



Resumes

Whether you have a contact in industry, are going through a company’s
recruiting process, or are using a headhunter, everyone will ask to see
your resume. Your resume convinces people that you have relevant skills
and talents and are worth consideration as a candidate. A person is most
often rejected from consideration for a job when someone looks at his
resume, doesn’t find relevant information, and quickly nixes it. This is
why it’s so important that your resume doesn’t sell you short.

Technical resumes are written differently than the non-technical
resumes described in most resume books. Non-technical jobs generally
have some latitude in terms of necessary skills, but technical jobs usually
require a very specific skill set. Employers aren’t interested in talking to
candidates who don’t have the necessary skills. This means that technical
resumes generally require more specific information than non-technical
resumes. In this appendix we examine and improve some typical devel-
opers’ resumes to illustrate the techniques you can use to get your resume
in shape. The example we'll start with is an extreme case of a very bad
resume from a junior developer. Although we hope that no real resume
would ever be this bad, the steps taken to improve it are relevant to
almost anyone’s resume and are made clearer by using an extreme case.



224 Appendix

FIGURE APP.1 SAMPLE RESUME BEFORE IMPROVEMENTS

George David Lee

Current Address: ) Permanent Address:

18 CandleStick Drive #234 19 Juniata Dr.

San Mateo, CA 94403 Gladwyne, PA 19035
650-914-3810 610-221-9999
george@windblown.com george@my_isp.com

Objective: I am looking to join a growing and dynamic company. I am
specifically interested in working for a company which provides interesting
work and career opportunity. I am also interested in an organization which
provides the opportunity for me to grow as an employee and learn new
skills. Finally, I am interested in companies in the high-tech space that are
looking to hire people.

Information:

Citizenship: United States of America

Birthdate: April 18, 1970

Place of Birth: Denver, Colorado, USA

Hometown: Philadelphia, Pennsylvania, USA

Social Security Number: 445-626-5599

Marital Status: Divorced

Work History:

June 1997-Present, Programmer

Windblown Technologies, Inc., San Francisco, Californla

I was part of a large group that moved old legacy applications from old
computers like PDP 11s to newer computers made by Intel and used lots of
new technologies and languages to do this. The advantages to our clients
was that new computers are cheaper than old computers and they don’t
break as much. This way, it makes sense for them to have us do this. I did a
portion of the programming on the new machines, but also had to work
with the old machines. Our clients were able to see substantial cost savings
as a result of our project. The group got quite good at moving these things
and I was part of six projects in my time here. Another big project involved
a lot of web stuff where I had to use a database and some other neat tech-
nologies. I am leaving because our current projects have not been very
intresting and I feel like I am no longer learning anything here.

Reference: Henry Rogers

Windblown Technologies, Inc.

1818 Smith St. Suite #299

San Francisco, CA 94115




Appendix

225

FIGURE APP.1 (Continued)

415-999-8845
henry@windblown.com
May 1997-June1997
BananaSoft Inc. Developer of apps., San Francisco, California
This job didn’t really work out and 1 left really soon. All I did was work on
some HTML programming which was never used.
No Reference
January 1996-May1997
F=MA computing corp. Engineer, Palo Alto, California
My role here was to work with a group of people on our main project. Th:ts .
project centered around developing a piece of software that allowed youto
figure out dependencies between clients and servers. The advantages of this
device are that you can more quickly debug and maintain legacy .
client/server devices. This was an exciting and interesting position. The =~
reason that I left was because my boss left and the company brought in a
different boss who didn’t know what he was doing.
Reference: Angelina Diaz
1919 44t St. :
Palo Alto, CA 94405
650-668-9955
Angelina.diaz@fma.com
June 1996 - December 1996
I did not have a job during this time because I spent it traveling around
Europe after college. I traveled through:

England

France

Germany

Czech Republic

Ireland

Italy

*  Spain
September 1992 — June 1996
UCLA Housing and Dining Student Food Server, Los Angeles, California
My responsibilities included preparing dinner for over 500 students in the
Walker Dining Commons. I started out as a card swiper for the first year.
Later, I started to cook food and spend one year as a pasta chef. After work-
ing as a Pasta chef, I spend the last two years overseeing the salad produc-
tion. I left this job because I graduated from college. ' o
_ Reference: Harry Wong
~ UCLA Housing and Dining
1818 Brum Dr.

(Continues)




226 Appendix

FIGURE APP.1 (Continued)

Los Angeles, CA 91611
310-557-9988 extension 7788
hwong@dining.ucla.edu

June 1995-September 1995 and June 1994 —~ September 1994
AGI Communications, Intern, Santa Ana, California
Learned how to work in a large company and be part of a dynamic organi-
zation. Worked on a project for the human resources department which
they eventually scrapped even after I had worked on it for two summers.
Reference: Rajiv Kumar
AGI Communications
1313 Mayflower St. Suite #202
Santa Ana, CA 92610
rajiv@agi.com
June 1992 — September 1992
Elm St. Ice cream shop;, Senior Scooper, Bryn Mawr, Pennsylvania
My responsibilities included serving ice cream to customers, dealing

with suppliers and locking up. After one month, I was promoted to senior
scooper meaning that I got to assign people tasks.
Education: .
University of California Los Angeles, Los Angeles, CA 1992-1996.
Bachelors of Science in Computer Systems Engineering, GPA 3.1 / 4.0
Member of Kappa Delta Phi Fraternity
Abraham Lincoln High School, Rosemont, PA 1988-1992, GPA 3.4/4.0

¢ Chess club president

® 11th grade essay contest award winner

¢ '3-Varsity letters in Soccer

- 2 Varsity letters in Wrestling

Hobbies:
¢ Partying
¢ Hiking
¢ Surfing
¢ Chess

Additional References are available upon request.

Most of this resume’s problems result from a single fundamental error.
Lee wrote his resume to describe himself, not to get a job. Lee’s resume is
much more an autobiography than it is a sales pitch for him and his skills.
This is a very common problem. Many people believe their resume
should simply describe everything they’ve ever done. This way, a poten-
tial employer can carefully read all of the information and make an
informed decision on whether to interview them. Unfortunately, it doesn’t



Appendix 227

work this way. Employers spend very little time on each resume they
read. Your resume must be a marketing tool that sells you and convinces
an employer that you're valuable—quickly. When you keep this idea in
mind, most of the other problems become self-evident.

m Write your resume to sell yourself.

Lee’s resume has a number of other very common problems. One of the
biggest is length. An interviewer may receive 50 resumes for an opening.
From previous experience, he knows that the vast majority of the candi-
dates are probably not appropriate for the job. The interviewer will have
time to speak with only four or five of the candidates, so he must elimi-
nate 90 percent of the applicants based on their resumes. Interviewers
don’t carefully read through each resume; they quickly scan the resume to
see if they can find any reason to keep it. The one question going through
the interviewer’s mind is “What can this person do for me now?” Your
resume has to look so good that the interviewer can’t possibly risk pass-
ing on you. An interviewer won’t wait very long to throw out a resume. If
he doesn’t see anything he likes after 15 or 20 seconds of looking at the
first page of a resume, the resume won’t make it any further.

Despite the need to make an impression, avoid the temptation to lie or
add items you're unfamiliar with. Inflating your resume can create a vari-
ety of problems. First, many interviewers will ask you about every item
on your resume; if you clearly aren’t familiar with one, it calls your entire
resume into question. Second, if you claim knowledge of a wide variety
of technologies outside your experience, an interviewer may not even
have to talk to you to figure out that you're lying. Finally, if you throw in
a grab bag of random buzzwords that don'’t follow any particular theme,
you may appear to be a jack-of-all-trades and master of none. The net
result is that your resume becomes a hindrance to your getting a job, as
opposed to a tool that helps you.

As a rule of thumb, try to keep your resume as short as possible. As
absolute maximums, if you have less than 5 years” experience, keep your
resume under one page. If you have less than 15 years of experience, keep
your resume under two pages. Under no circumstances should any
resume exceed three pages.

m Keep your resume short. Make every word count.

There are lots of ways besides just deleting information to shorten
Lee’s resume. While much information should be deleted, there is also




228 Appendix

information that should be modified, and even a fair amount of informa-
tion that should be added.

Content-wise, Lee’s resume is not buzzword compliant—it doesn’t
mention technologies by name. This poses a big problem for him. Many
companies scan resumes into their computer systems and index them by
keywords. Then, when someone requests a “Java Developer with XML
experience,” the system prints out all resumes with the words “Java” and
“XML.” Other companies file resumes by skills, but the result is the same.
Because Lee’s resume is short on buzzwords, it is unlikely to even make it
into the stack of resumes that an interviewer sees. He should list all soft-
ware products, operating systems, and languages that he’s used. He
should also list any other relevant topics he has experience with—for
instance, security algorithms or network protocols. Then, Lee should orga-
nize his skills. He can categorize his skills by topic as in Figure App.2.

When you list a specific product in your resume, you probably want to
include version numbers with products to show that you're up to date
with the latest and greatest. We've omitted most version numbers from
our examples because they would be out of date by the time you read
this, but your resume should be updated much more frequently than a
book. You should always keep your resume updated with your most
recent experiences. Listing an out-of-date version number on your resume
is much worse than just listing the product without a version number.

COMPUTER SKILLS:

¢ Languages: C (Lex and Yacc); C++; Java; Perl; Visual Basic, and

VBScript; JavaScript

Internet Technology Experience: Extensive experience with Java

Servlets; JSP; mod_perl; XML and XSL; client/server architecture;

HTML; CGI scripts; Korn Shell scripts; ASP

Operating Systems: UNIX (Linux, Solaris, HP-UX, FreeBSD); Macin-
tosh; Windows 98, NT

e Databases: SQL; Oracle Products (Oracle RDMBS 8i, Oracle SQL*Plus,
PL/SQL, PRO*C); MS SQL Server; IBM DB2; MySQL; Informix; JDBC;
ODBC

¢ Security: DES; RSA; El-Gamal; MAC; Hashing; PGP; SSL; Digital Cash;
Authentication

¢ Graphics: OpenGL; extensive knowledge of scan-conversion routines




Appendix

229

T Explicitly list your skills by name on your resume.

Lee’s resume needs to be formatted more cleanly. In its current form, it
uses too many fonts, formats, and lines. This is generally annoying—
some would say it makes his resume look like a ransom note. It can also
cause problems for an automated scanning system. He should choose a
standard font like Times and stick with it throughout the resume.

Lee’s content is difficult to read, rambling, unfocused; it doesn’t
describe his contributions and doesn’t sell him as a valuable employee.
This is especially true regarding his work experience. First, Lee should
reorganize his content into bulleted lists. These are faster to read than
descriptions in paragraph form, and they make it easier for an inter-
viewer to absorb more in less time. This increases the chances that his
resume will be one of the few that the interviewer decides to call.

Lee’s descriptions should be more focused. His descriptions don’t
clearly state exactly what he did. He describes what the team did and the
general company focus, but not his role, which is the most important part
of selling himself as a good candidate. He should also use action verbs
like implemented, designed, programmed, monitored, administered, and
architechted to describe his contributions. These should describe specific
actions, such as “designed database schema for Oracle 8i database and
programmed database connectivity using Java threads and JDBC.” When
possible, he should quantify his tasks and describe the results of his work.
For example, he could write, “administered network of 20 Linux
machines for Fortune 100 client, resulting in $1 million in revenues annu-
ally.” This is a good sell job because it answers the question “What can
you do for me right now?” One caveat is to make sure that any metrics
you give are impressive. If your metrics are not impressive, omit them.

Another part of focusing the content is to decide the order in which to
list responsibilities for a certain job. Generally, you want to list responsi-
bilities from most impressive to least impressive. However, make sure
that you get the main point across first. For example, if you did both sales
and development at a job, you may have some very impressive sales,
some impressive development work, and a few less impressive sales.
Since the main point of you want to emphasize is that you were success-
ful in sales, you should list all of your sales work first, followed by all of
your development work. Finally, make sure your points follow a coherent
order. This often means grouping items by topic area, even if it causes
them to deviate slightly from a strict ranking by importance.

Many people have trouble selling themselves in their resumes. Often,
this happens because they feel that they have to be modest and avoid




230 Appendix

boasting. As a result, they end up underselling themselves. You should
never lie, but you should put the most impressive slant on whatever you
have done. If you really have trouble saying nice things about yourself,
it’s often useful to ask a friend for help.

m Present your experience in bulleted lists and cast it in the best
possible light.

Lee’s resume also includes irrelevant items that take up valuable space.
One of the first items an interviewer reads is that Lee is a citizen of the
United States and born in Denver. Even though his citizenship or resi-
dence status may be important later in the game, none of this information
will convince an interviewer that he’s the person for the job. It is simply
wasted space. Other irrelevant information includes his birth date, home
town, social security number, marital status, hobbies, and travel history.
None of this information makes him a more attractive candidate. Lee’s
use of the word “I” is unnecessary because the resume is obviously about
him. Lee shouldn’t bother to mention references, either. Interviewers
won't check references until they’re considering making an offer, so it’s
pointless to put them on your resume. He doesn’t even need to include
“References are available upon request” because that’s always implicit.
Similarly, a resume is not the place to mention why he left earlier jobs.
This question is likely to come up in interviews, and it's a good idea to
have a strong, positive response prepared, but it doesn’t belong on a
resume. Lee’s middle name should also be omitted unless he usually goes
by George David. Finally, any additional information that would make
you a less attractive candidate should generally be omitted from your
resume. For example, don’t put something on your resume like “looking
for half time position until graduation in June, then conversion to full
time.” Most interviewers would pass over someone like this and look for
someone available full time instead. However, if the interviewer speaks
with you and is impressed, it’s a different story.

Lee needs to look at his resume and focus all necessary information to
make it as short and useful as possible. Every word must count. For
example, he can start with his address information. It's not clear whether
he should be contacted at his permanent or current address. He should
give only one address, phone number, and e-mail address. Lee also lists
too much information about his high school accomplishments. Old
awards, accomplishments, or job tasks that are not relevant to your cur-
rent job search should generally be omitted. Any job that occurred more
than 10 years ago or is totally different from the job that you’re seeking

m' R RO—— ) .




Appendix

231

should be mentioned only briefly. For example, Lee goes into too much
detail about his work at the ice cream shop and the dining hall. It’s fine to
mention this employment, but he won’t get the job based on his responsi-
bilities scooping vanilla ice cream. He should give only relevant job data.
Lee should omit the job that he held for two months because it will only
count against him. Finally, Lee’s objective statement doesn’t add any-
thing. Everyone is looking for an “interesting” job with a “dynamic” com-
pany. His objective statement should briefly state what sort of job he
wants, such as “software engineer” or “database programmer.”

m Include only relevant information.

After improving the resume’s content, Lee needs to decide how to
order his information most effectively. One obvious way to do this is
chronologically. In this case, Lee would start out with his high school edu-
cation, then his job at the ice cream shop, then college, and so forth. A
reader could easily follow Lee’s experience throughout his life. Even
though this is a consistent ordering, it is a poor choice. Always put the
most compelling reason for you to be considered for a job first, at the top
of the resume. Interviewers start reading resumes from the top, so you
want to put your best stuff first, where it can convince the interviewer to
read the rest of the resume. After that first reason, you should continue to
follow a clear and concise organization that spells out your qualifications.
The end of the resume is for the least impressive information. Your most
recent experiences are more relevant than your earliest experiences, so
where you do use chronological ordering, put things in reverse order.

In Lee’s case, his most impressive asset is undoubtedly his skills. He
has a wide range of relevant skills. He should begin his resume with these
skills. Next, Lee should list either his work history or education. Early in
your career you should generally put your education first, especially if
you went to an impressive school. Ever after, put your experience first. In
Lee’s case, it’s a toss-up as to whether to list his education or his work
experience next. He’s right on the cusp of when he should switch from
listing education first to work history first. Lee did graduate from an
impressive school not too long ago, and he has held several jobs since
then, none of them for very long. Therefore, there’s probably a slight
advantage to listing his education before his work history. In Lee’s case,
his education is a single item. If he had more than one degree, he would
put the most impressive one first.

Lee also needs to proofread his resume better. For example, he spelled

“interesting” as "intresting” and used “spend” when he should have used




232 Appendix

”spent.” Mistakes make you look careless and unprofessional. Many peo-
ple stop reading a resume as soon as they find a single mistake. At the
very least, mistakes make you a weaker candidate. The only way to avoid
mistakes is to proofread. Proofread over and over and over. Then, let the
resume sit for a while, come back to it, and proofread some more. It’s also
a good idea to ask a trusted friend to proofread for mistakes. As long as
you have that friend reading your resume, find out if he thinks a section
is unclear, has a recommendation on how to improve your resume, or
thinks you could do a better sell job. Your friend’s reactions may give you
a clue about how your resume will appear to an interviewer.

One final matter has to do with printing your resume. Often, you will
submit your resume electronically and printing won’t be an issue. If you
print out your resume, there’s no need to use special paper or have your
resume professionally printed. Resumes are often photocopied, scanned,
faxed, and written on, making fancy paper and printing a wasted
expense. A laser printer and simple white paper will always suffice.

Following all of the preceding recommendations, Lee’s improved
resume appears in Figure App.3.

As you can see, this resume is more likely to make the cut and get Lee
opportunities to speak with interviewers. The resume is based on the expe-
riences and skills of the same person, but it looks almost entirely different.

FIGURE APP.3 LEE'S IMPROVED RESUME

George Lee
18 Candle Stick Drive #234
San Mateo, CA 94403
650-914-3810
geoge@my_isp.com

OBJECTIVE: Developer

COMPUTER SKILLS:
¢ Languages: C (Lex and Yacc); C++; Java; Perl; Visual Basic
and VB Script; JavaScript

¢ Internet Technology Experience: Extensive experience with
Java Servlets; JSP; mod_perl; XML and XSL; Client/server
architecture; HTML; CGI scripts; Korn Shell scripts; ASP

e Systems: UNIX (Linux, Solaris, HP-UX, FreeBSD);
Macintosh; Windows 98, NT

e Databases: SQL; Oracle Products (Oracle RDMBS 8i,
Oracle SQL*Plus, PL /SQL, PRO*C); MS SQL Server; IBM
DB2; MySQL; Informix; JDBC; ODBC



Appendix 233

FIGURE APP.3 (Continued)

¢ Security: DES; RSA; El-Gamal; MAC; Hashing; PGP; SSL;
Digital Cash; Authentication

*  Graphics: OpenGL; extensive knowledge of scan-
conversion routines

EDUCATION: :
University of California Los Angeles, Los Angeles, CA 1992-1996.
BS, Computer Systems Engineering GPA 3.1 / 4.0

EXPERIENCE:
6/97~ Developer and Consultant, Windblown Technologies, Inc.,
Present San Francisco, CA
*» Lead developer on four projects generating $1 million in
revenues.
*  Ported 100,000-line enterprise payroll application from
PDP 11 to Sun Ultra Sparc 10.

*  Designed database schema for Oracle 8i database;
programmed database connectivity using Java threads
and JDBC.

*  Architected Web tracking application to monitor packages
for shipping firm using JSP, JDBC, and an Oracle 8i
database,

¢ Wrote front-end Java Servlet code to allow an airline to
securely communicate with its suppliers via the Internet.

1/96-5/97 F=MA Computing Corp. Server-side Engineer, Palo Alto, CA

*  Improved on Internet order procurement performance by
25 percent using Apache, Perl CGI scripts, and Oracle 7.

¢ Developed TCP/IP stack tracer to find client/server
dependencies.

» Created Web-based reporting system using Java Servlets
and IBM’s DB2 database.

¢ Wrote Perl scripts to monitor mission-critical systems and
notify administrators in case of failure.

¢ Ported DOS-based C client to Windows NT for
automobile production monitoring,

9/92-6/96 UCLA Housing and Dining Student Food Server

6/95-9/95 AGI Communications, Santa Ana, CA, Developer
* : Developed HR time tracking system

LElm St. Ice Cream Shop, Bryn Mawr, PA, Ice Cream T
scooper -




234 Appendix

Although the same ideas that improved Lee’s resume will also improve
a senior person’s resume, there are other issues to consider. Senior people
generally have some management responsibility, and it’s important that
their resumes show they are capable of this task. For example, consider
the following resume for a senior manager, Sam White. His initial resume
is presented in Figure App.4. As you read through his resume, try to see

FIGURE APP.4 SAM WHITE'S RESUME

Samuel Thomas White

3437 Pine St.

Skokie, IL 60077

813-665-9987

sam: white@mindcurrent.com

Statement:

Over the past 3 decades my career has evolved from a lab
technician to Web project manager. During that time, I spent some time
away and earned my Ph.D. in physics. I have taught college computer
science off and on for over 18 years and published numerous journal
publications. I have spent the past four years as a project manager
overseeing a large Web application development.

At the present, | am actively pursuing MSCE certification to better
architect the necessary solutions. I have completed introductory hands-on

courses in Networking Fundamentals; NT Server, and SQL Server. [ am
taking continuing education courses in management and in other advanced
technology topics. Last March, I attended my company’s manager seminar
conference.

Brief Computer Histo

1977: Completed dissertation, moved to Chicago

1977: 1 received my first personal computer. I wrote a program that
implemented a rudimentary spreadsheet.

1979: I started to consult for a living. I was independent and
worked primarily on assembly programming,

1980: Formed my company, Big Dipper Consulting. Worked on a
variety of projects ranging from network debugging tools to graphics chip
optimizations.

1994: My first trip on the Web with NCSA Mosaic. I knew that this
would be big. I started out running simple static pages, then moved onto
cgi scripting. I have been on the forefront of Web technologies and have
fulfilled numerous consulting contracts and led many development efforts.




Appendix 235

FIGURE APP.4 (Continued)

CorePlus Corporation
7/1997-Present Senior Web Manager

Responsibilities include: management and maintenance of Web
development effort for both U.S. and Canadian sites, management for
network redesign, establishing and implementing protocols, migrating
from Windows NT to Solaris, leading security audit using cutting-edge
tools and managing 12 employees, providing 24 /7 access for both internal
deployment and overseas operations, establishing procedures to ensure
constant monitoring during non-working hours in case of failures,
upgrading all software as new software is released and determined to be
stable, ordering computers for both everyday (e-mail, Web), development
and travel, establishing proper backup procedures, evaluating different
vendors’ software packages for current needs and anticipating future needs
in both infrastructure and licenses.

Pile-ON Technologies
11/1995-8/1997 Senior Web Developer

Responsibilities included: designing a UNIX-based Web
development environment, installing necessary software including web
server, development tools and source control, integrating legacy applications
on PDP 11 heirarchical database to work with cgi scripts that get and set the
necessary information, selecting third-party screen scraping products to
receive necessary information from legacy system, implementing security
procedures to prevent denial of service, spoofing and other attacks,
managing three junior developers and ensuring coordination and timeliness
of efforts, verifying cross Web-browser compatibility for all Web design
efforts, purchasing necessary infrastructure to ensure robustness against all
possible problems, built in redundancy, hiring and building development
team, reporting directly to the Senior VP of engineering, coordinating with
customer support, upgrading network to include newest and fastest
solutions, working with consultants to integrate new products.

Athnorn Inc.
6/1990-11/1995 Senior Engineer, MIS

: Responsibilities began by working as a C++ developer workingon
client/server application and doing some system administration tasks such
_ as ensuring network reliability and integration between onsite and offshore

(Continues)




236 Appendix

FIGURE APP.4 (Continued)

developers. Promoted to senior engineer after two years. Additional
responsibilities included designing enterprise-wide source control system
and development environment spanning multiple sites, enabling dial-up
and telnet connections via a VPN, managing a team of 5 developers and
coordinating with marketing to ensure timeliness and quality of product,
worked with contractors to implement third-party development products,
evaluated and selected various vendors solutions, traveled to Europe,
Japan, and the Middle East to meet with clients and assess future needs and
problems, worked on moving several products to UNIX based
environment, designed system to allow synchronous development across
multiple time zones, attended company management philosophy seminar,
attained certification in advanced use of all products, ensured compliance
with corporate standards, worked with customer support to respond to
common problems.

Detroit Motor Company
Corp. of Engineers
1/1990-5/1990 Contract Programmer Analyst

Four-month contract position which involved substantial
modifications and enhancements to existing database program. This
included custom generation of reports, additional ways to add information
to database, and integration with existing products to achieve common
functionality and data change. Also created files which allowed for much
faster uploading and downloading of information. Also provided help with
the LAN and WAN, technical support and full documentation of existing
system. Worked on integration with legacy applications as well.

Tornado Development Corp.
6/1988-10/1989 Contract Programmer

Responsible for planning, development and the administration of
BSD File servers. Used Oracle and SQL to do a variety of tasks mostly
having to do with order tracking and HR tasks such as payroll and
employee benefits. Worked to provide technical support for all users on
various types of platforms. Additionally installed and maintained a variety
of common applications and was responsible for troubleshooting when
problems occurred.

Garson and Brown, Attorneys at Law
6/1985-5/1988 Computer Engineer

Responsibilities include troubleshooting, maintenance, repair, and
support of LAN/ WAN networks, often had to use telephone and L

P _— V




Appendix 237

FIGURE APP.4 (Continued)

troubleshoot problems with novice user, updated all company software
including Novell, Windows and other third-party proprietary products,
designed and installed LAN in office place, maintained AN and was
responsible for new users, provided all support and coordinated with
vendors

Hummingbird Chip Designs
5/1980-6/1985 Chip Tester

Responsibilities included testing all chip designs thoroughly using
a variety of third-party products that ensured reliability and yield, worked
with consultants to attain knowledge using third-party testing products,
wrote scripts that automated repetitive tasks, reported potential problems
to developers, coordinated all yield test efforts, worked with customer
service to verify customer problems, was a liaison between customer
support and development

EDUCATION

Indiana University, Bloomington, IL, 1966-1970 BA in Physics

Junior Year Electronics Award Winner

Member of Lambda, Alpha, Nu Fraternity

Member of junior varsity fencing team

University of Wisconsin, Madison, Wisconsin, 1970-1977 PhD in
Physics

Doctoral Thesis Work on Molecular Structure of Molybdenum
compounds when exposed to intense laser bursts of varying intensity.

Skills: Attended technical courses for Microsoft Windows NT 4.0

Server & Workstation, Extensive experience with TCP/IP protocols,
security protocols including SSL and PGP, HP Openview, Java, VB,
VBScript, ActiveX, ASP, IIS, Apache, Netscape Enterprise Server, FoxPro,
SQL Relational databases including Oracle, Informix, Sybase, DBZ and SQL.
server, UNIX system administration (Irix and Linux), C, C++, Network
Architect, Shell Scripting, CGI scripting, HTML, DHTML, repairing printers

Hobbies:

Barbershop Quartet, Golf, Tennis, Frisbee

Horseback Riding, Walking, Swimming

Reading, Traveling, Cake Decorating

Other:

Conversant in Spanish

Citizen of the United States of America
nces available upon request.




238 Appendix

which of the techniques that benefited Lee’s resume could also be helpful
for White.

White’s resume has the same major problem as Lee’s first resume. It is
an autobiography, not a marketing tool. This structural problem is evi-
dent from the beginning where he gives a brief time line of his life over
the past 30 years. Writing an autobiography is a common problem for
senior people with impressive credentials such as White’s. Many senior
people believe that if they describe their accomplishments, interviews
will follow. This belief is mistaken, just as it is for junior people. Regard-
less of the seniority of the applicant, the only question going through an
interviewer’s mind is, “What can you do for me now?” In many ways,
focus is even more important for a more senior job because you need to
make a greater impression in just as little time.

Many of the specific problems with this resume are the same as with
Lee’s initial resume. This includes being too long. White should cut his
resume to no more than two pages and strive for one and a half. White
should also arrange his descriptions in bulleted lists so that they are eas-
ier to read. However, White’s main content problem is that his resume
doesn’t sell him for the sort of job he’s trying to get. White spends lots of
time describing various job tasks that are clearly junior tasks. Senior posi-
tions generally require some management and have less emphasis on
technical skills. The ability to perform junior tasks won't get you an inter-
view for a job that requires senior tasks. When applying for a senior posi-
tion, you should stress your management skills and experience more than
your technical skills or achievements in junior positions.

White needs to show positive results from his past leadership. In this
vein, it is necessary to both describe the experience and quantify the
result. For example, White’s resume says, “management and maintenance
of Web development effort for both U.S. and Canadian sites.” This is an
impressive achievement, but the size of the undertaking is not clear; nor
is it clear whether the project was a success. The description in White’s
resume leaves open the possibility that the project was a total failure and
he is being forced to resign in disgrace or that the project was trivial and
consisted of posting a few documents to a Web server. White should
quantify the results of his work whenever possible. For example, he could
write, “Managed team of 7 in developing and maintaining U.S. and Cana-
dian Web sites. Sites generate 33 million hits and $15 million annually.”

White is looking for a job that is heavy on project management and
lighter on skills. He should deemphasize his “flavor of the month” buzz-
words and emphasize his experience. He may even want to eliminate his




Appendix 239

technology skills inventory to make sure the reader doesn’t think he’s try-
ing to get a less senior position.

White’s revised resume appears below in Figure App.5. Notice how the
resume explains his accomplishments much more clearly and does a
much better sell job. White becomes someone who a company couldn’t
afford not to interview.

This revamped resume is a much more effective marketing tool for
White. The two resumes presented so far cover many of the cases you're
likely to encounter when you write your resume. You may want to see
more examples of good resumes for different sorts of people to get a feel

FIGURE APP.5 WHITE’'S REVISED RESUME

Sam White
3437 Pine St
Skokie, IL. 60077
813-665-9987
sam_white@mindcurrent.com

Objective: Senior Manager in Internet Development

Experience:
7/97-present  CorePlus Corporation, Director of Web Development,

Santa Rosa, CA

¢ Managed team of seven in developing and maintaining
U.S. and Canadian Web sites. Sites generate 33 million
hits and $15 million annually.

¢ Led team of three system administrators to implement
full network redundancy, perform a security audit,
develop backup procedures, and upgrade hardware
and software for an 800-computer Linux and NT
network.
Evaluated all major systems purchases.
Purchased $400,000 of software and professional
services after evaluation of seven packages and three
firms, leading to 20 percent faster customer service
response times.

* Hired four developers and managed staff of seven with
100 percent retention. ‘

* Selected contractors to migrate Web servers from
Windows to Unix. Migration occurred one month
ahead of schedule and 20 percent under budget. =~

(Continues)




240 Appendix

FIGURE APP.5 (Continued)

11/95-8/97 Pile-ON technologies, Senior Web Developer, San Jose, CA

* Designed UNIX Web development environment and
supervised team of five in implementation of Web log
visualization tools. Tools have generated $5,000,000.

* Evaluated and selected over $200,000 of software and
services to supplement Web logs development efforts.

» Developed feature set for $7,000,000 product based on
interviews with 20 clients.

¢ Wrote 100,000-line C++ libraries used by three products
with similar database access patterns.

*  Recruited and trained two junior developers.

6/90-11/95 Athorn Inc., Lead Engineer, Fremont, CA

* Coordinated five developers in on-tine six-month
project to develop client portion of client / server
application to enable department store cash registers to
update central databases in real time. Product has
50,000 users.

¢ Met with clients to determine future feature sets for
cash register client.

¢ - Implemented Virtual Private Network between San
Francisco Bay Area office and New York City office.

¢ Installed and supported internal enterprise-wide
source control used by 30 developers on 10 projects.

6/88-10/89  Contractor at many companies
¢  Upgraded network systems at Detroit Motors, Inc.
¢ Installed and designed database applications for
Tornado Development Corp.

6/85-5/88 Garson and Brown, Attorneys at Law, Computer
Engineer, Palo Alto, CA

5/80-6/85 Hummingbird Chip Designs, QA Tester, San Jose, CA

Education:
University of Wisconsin, Madison, Wisconsin, Ph. D. in Physics, 1970-1977
¢ "Doctoral thesis work on molecular structure of
molybdenum atoms when exposed to laser bursts of
varying intensity,
Indiana University, Bloomington, Indiana, B. A. in Physics, 1970
Other:
¢ Fluent in Spanish

[ e—— . T ———————————”" N ..._..A‘




Appendix

241

for how to write an effective resume. The remaining portion of this
appendix presents three resumes of people with different experience
searching for different kinds of technical jobs. As you look at the resumes,
notice what content stands out and how this helps sell the person as a
potentially valuable employee.

FIGURE APP.6 HOT RESUME SAMPLE #1

Jenny Ramirez
jenny_ramirez23@mit.edu
MIT University

PO BOX 4558
Cambridge, MA 02238
227-867-5309

EDUCATION:

9/96-1999 Massachusetts Institute of Technology, Cambridge, MA.
BS, Electrical Engineering, 2000 (GPA 3.7/4.0)
* Specialist in databases and security
* National Merit Scholar, Phi Beta Kappa

EXPERIENCE:

6/98-8/98 E-Commerce Developer, WebWorks Corporation,
Huntington Beach, CA.
Implemented search feature on Fortune 500 company’s
Internet storefront using ASP and SQL Server.
Designed sample projects, using Oracle, Informix, and MS SQL
Server to demonstrate performance trade-offs between the
products to clients.
Made initial contact with two companies that became clients
and resulted in $80,000 in revenues. ‘
Wrote three proposals that were accepted and resulted in
$200,000 in revenues.

6/97-9/97 Web Software Developer, The Aircraft Tech., Renton, WA.
Designed, researched and implemented a database solution to
improve tracking and reporting of employee accomplishments.
Designed and implemented CGI scripts to dynamically report o
Web server statistics.

(Continues)




242 Appendix

FIGURE APP.6 (Continued)

9/97-12/97 Computer Instructor, MIT Computer Science Department

1/97-3/97 Deans Tutor, MIT School of Engineering
COMPUTER SKILLS:

e Languages: C, C++; Java; ADA

¢ Internet Technology: Java Servlets; ASP; mod_perl; XML
and XSL; HTML ‘

¢ Systems: UNIX (HP-UX, Solaris); Windows 98, NT

¢ " Database: SQL; MS SOQL. Server; IBM DB2

LANGUAGES:

Fluent in French, proficient in German

FIGURE APP. 7 HOT RESUME SAMPLE #2

Mike Shronsky
1814 Park Dr. #244
Albuquerque, NM 98872
352-664-8811
mikey. s227@warmmail.com

Objective: Software Engineer in Web Development

Work Experience:
5/96-present  Warner Tractors Manufacturers, Albuquerque, NM,

Software Engineer

¢ Created Java applets using Symantec Visual Café to
allow customers to compare various tractors.

Wrote Java servlets to generate dynamic Web content
from Oracle database.
Implemented Perl CGI reporting scripts for CORBA
system.

Wrote SQL queries and designed database schema for

Oracle database. o
Researched and selected development environment of
Solaris, Apache, and Apache Jserv extension. .

B




Appendix 243

FIGURE APP. 7 (Continued)

7/94-4/96 Problems Solved, Inc., Albuquerque, NM, Programmer
* Incorporated focus group input into redesign of order
tracking Ul to improve workflow efficiency by 20
percent.
*  Wrote 160 pages of product documentation for order
tracking application.
Analyzed product performance by writing shell scripts.
Wrote hundreds of Perl scripts to test various Web
server responses for clients. Major focus of scripts was
fin_wait_2 Web server problems.
5/92-7/94 Hernson and Walker Insurance Agents, Austin, TX,
Systems Administrator
Maintained network, ordered systems, and implemented
data tracking system.

Computer Skills:

Languages: Java, Perl

Databases: Oracle, DB2, MySQL

Systems: Windows 98, NT, Unix (Solaris, Linux)

Web Skills: CGI, JSP, Apache, IIS, Netscape Enterprise
Web Server

Education: Harcum College, Ardmore, PA, 1996, BA in management

Other: Fluent in Russian

FIGURE APP.8 HOT RESUME SAMPLE #3

Elaine Mackenzie
22 Mt. Rogers Rd.
Nashville, TN 37212
615-667-4491
macky52@yeehah.com

Objective: Technology Consulting

Computer Skills; ‘ ,
¢ Languages: C, C++, Visual Basic, VBScript, JavaScript

* Operating Systems: Windows NT, Windows 98
Internet: ASP, ActiveX, IIS, ColdFusion, HIML, -
DHTML, XML and XSL, Resonate .

(Continues)




244 Appendix

FIGURE APP.8 (Continued)

Experience:
9/97-present  Web Integrations Specialist, National Web

Consulting, Inc., Nashville, TN

* Lead consultant on three projects generating $900,000.

* Built Web front end in ASP to interact with legacy
databases and perform all Human Resources-related
functions for a Fortune 100 client.

*  Wrote ASP code to interface with legacy hierarchical
IBM database.

»  Constructed Web user interface component on six
different projects.

e Managed $300,000 project resulting in on-time and on-
budget delivery.

¢ Landed three accounts, generating $720,000 in
revenues.

* Formed partnerships with three third-party software
vendors. Partnerships generated $1,500,000 through
joint contracts.

8/93-9/97 Information Systems Technology Specialist, Johnson &

Warner, Systems Integration Division, Nashville, TN

»  Wrote 200,000 lines of C++ code and 150 pages of
documentation and billed $1,200,000.

* Built order tracking system for Fortune 500 client, using
ASP and SQL Server.

* Led design team that architected system layout for 25
Windows NT Web Servers using Resonate load
balancing software.

* Landed two accounts generating $250,000 total.

* Sold $200,000 in follow-on services.

* Hired and trained two associate consultants.

Additional Information:
Fluent in Spanish and Czech

Education:
Foothill College, Los Altos Hills, CA, BA in Accounting, 1990



Abstract classes, 199
Abstract data types (ADTs),
203-204
Accepting and rejecting
offers, 7, 8-9, 221
Acyclic linked lists, 53-57
Advanced keywords, 16
Advanced programming
languages, 16-17
Aggregates, 131-132
Alumni organizations, 3
Ancestor, 61
AND operation, 128, 145,
147
Argument passing, 199-201
“Arms length recursion,”
111n, 115n
Arrays, 16, 75-99; See also
Strings
C/C++,77
dynamic, 76
insertion/deletion, 76
Java, 77-78
lookup operation, 76
memory allocation, 76
multidimensional, 76n
Perl, 78, 86-87
problems

binary search, 106-108
combinations of a string,
113-117

first non-repeated char-
acter, 80-83

et R

integer/string conver-
sions, 92-99
permutations of a string,
108-113
remove specified charac-
ters, 83-87
reverse words, 87-92
ASCII strings, 82, 85
integer/string conver-
sions, 92-99
Assumptions, brainteasers,
160-162, 168-171
Asymptotic running time,
19
Auto storage class, 196
AVG aggregate, 131-132

B
Backward compatibility,
195, 198
Balanced trees, 64
BalanceLock semaphore,
134
Bandwidth, 207
Base case, 101-102,
110n-111n
Big-endian or little-endian,
142-144
bit operators, 143
endianness defined,
142-143
union types, 144
Big-O analysis, 17-21

lﬁdex

asymptotic running time,
19
CompareToAll, 18-21
CompareToMax, 18-20
general procedure for,
20-21
optimizing Compare-
ToAll, 21
Binary operators, 128
Binary search
error conditions, 106-107
iterative solution, 108
recursive solution,
106-107
weighing problem,
172-173
Binary search trees (BSTs),
16, 62—64
hashtables vs., 210-211
lookup operation, 62-64
obtaining smallest/largest
element, 64
problems
lowest common ances-
tor, 71-73
preorder traversal, 6769
preorder traversal, no
recursion, 69-71
Binary semaphores, 134,
153
Binary trees, 61-65; See also
Binary search trees
(BSTs); Trees




246

index

Binary two’s complement
notation, 127
Bit operators, 13n, 16,
127-128
problems
big-endian or little-
endian, 143
number of ones,
145-148
Boat and dock, 178-181
diagram, 178, 179
graphical approach,
179-180
mathematical approach,
178-179, 180
Brainstorming, 162-163
Brainteasers, 159-191; See
also Graphical/spatial
puzzles
assumptions and,
160-162, 168-171
brainstorming, 162-163
complex problems, 162
estimation problems,
163-164
explanations to inter-
viewer, 162
mathematics and, 160,
180-181, 184
Microsoft and, 159, 163
nontraditional solutions,
167
obvious solutions, 160,
168,176
problems
bridge crossing, 167-171
count open lockers,
164-166
heavy marble, 171-176
three switches, 166—-167
purpose of, 159, 167
simple/restricted prob-
lems, 162-163
Breadth-first search (BFS),
65—66
Bridge crossing, 167-171
checking assumptions,
168-171
obvious solution, 168

Bugs in RemoveHead, 4143

E— . |

data coming into function,

42
data coming out of func-
tion, 42-43
error conditions, 42, 43
generic de-bugging strat-
egy, 41-42
line-by-line analysis, 42
NULL pointer, 43
Bulleted lists, on resumes,
229, 230
Burning fuses, 188-189
all possible actions, con-
sidering, 188-189
time as useful measure,
188
Busy waiting, 154, 205
Buzzwords, on resumes,
228

C
C programming language,
12; See also C++
abstract data types
(ADTs), 203204
array treatment, 77
bit operators, 127-128
C++ and, 195-196
combinations of a string,
116
concurrency implementa-
tion, 133-134, 152-155
permutations of a string,
112-113
producer/consumer,
152-155
remove specified charac-
ters, 83-87
reverse words, 89-92
singly linked lists, 24
storage classes in, 196-197
string treatment, 79
trees, 59-60
union types, 144
updating head pointer,
25-26
C++, 12; See also C pro-
gramming language
argument passing,
199-201

array treatment, 77

backward compatibility,
195, 198

bit operators, 127

classes vs. structs, 197-198

design goals, 195, 198

features of, 195-196

friend classes in, 197

Java vs., 195-196

macros vs. inline func-
tions, 201-202

parent-child class relation-
ship, 198-199

singly linked lists, 24

stack implementation,
34-35

string treatment, 79

trees, 59

Calculus, for brainteasers,

160, 179, 181

Career goals, 217
Ceiling function, 176
Change, in graphical/spa-

tial puzzles, 177-178

Child class, 198-199
Child nodes, 60

binary search trees (BSTs),
62

binary trees, 61

left/right, 61, 62, 63

list flattening, 47-53

Circle, eighth of, 135-137
Circular linked lists, 29

reference counting and,
206

Classes, 59

child, 198-199

friend, 197

parent-child relationship,
198-199

storage, 196-197

structs vs., 197-198

Class hierarchy, 202-203
COBOL, 12
Code

checking, 15-16

comparing value to NULL
or0,17

writing the best, 12

writing too much, 17



Index 247

Coding questions; See Pro-
gramming problems
College career centers, 3
Combinations of a string,
113-117
C solution, 116
loop partitioning, 117
manual example, 113-115
Perl solution, 117
style /performance trade-
off, 115n
Common key, SQL, 131
Company and employee
database, 148-150
CompareToAll, 18-21
optimizing, 21
CompareToMax, 18-20
Compensation questions,
218-221
at beginning of process,
218
near end of process,
218-219
negotiation and, 219-220
salary history, 221
Complex brainteasers, 162
Complex pointer casting,
16
Computer architecture,
endianness of, 142-144
Concurrency, 132-135
banking system example,
132-134
busy waiting, 154, 205
in C, 133-134, 152-155
deadlock, 134, 204-205
in Java, 134-135, 155-157
livelock, 204-205
over-locking, 205
problems
producer/consumer,
152-157
thread programming
issues, 204-205
race condition, 204
SQL, 132
Constant pointer, 77n, 200
Contacting companies, 1-3
Counting cubes, 181-185
on each face, 181-182

4 x 4 x 4 x 4 hypercubic
array, 183-184
4 x4 x 4 array, 182
generalizing solutions,
182-183, 184~185
in layers, 182
mathematical approach,
184
non-surface cubes, 182
pattern-based approach,
185
3 x 3 x 3 cubic array,
181-182
Count open lockers,
164-166
key to solving, 166
prime numbered lockers,
165
single locker result,
164-165
CreateStack function, 32-33,
34
Cryptography
new algorithms, 210
symmetric vs. public,
209-210
Current pointer, 4647
Cyclic linked lists, 53-57

D
D-arrays, 29-30, 76
Databases
advantages, 208-209
company and employee
problem, 148-150
SQL and, 129, 132
Data structures
arrays; See Arrays
graphs, 59, 6667
linked lists; See Linked
lists
multilevel, 47, 48
programming problems
and, 16-17
stacks, 29
trees; See Trees
Deadlock, 134, 204-205
De-bugging
generic strategy for,
41-42

macros and, 202
RemoveHead, 4143
DeleteStack function, 32-33
DELETE statements, SQL,
132
Deletion
arrays, 76, 83-87
binary search trees, 64
doubly linked lists, 28
linked list tail pointer
maintenance, 3641
singly linked lists, 27-28
DeMorgan’s law, 141-142
Depth-first search (DFS), 66
Descendant, 61
Design freedom, 198
Diagrams, 177-178
boat and dock, 178, 179
escaping the train,
190-191
fox and duck, 187
Dining out guidelines, on-
site interviews, 4-5
Directed graph, 67
Disk caching, 208
DISTINCT keyword, SQL,
151-152
Dock; See Boat and dock
Doubly linked lists, 28-29,
47-53
Draw eighth of a circle,
135-137
Dress code, interview, 5
Duck; See Fox and duck
Dynamic arrays, 29-30, 76
friend classes and, 197
Dynamic memory, 17

E
Edges, 67
Efficiency
garbage collection, 206
programming language
trade-offs, 92
programming problem
solutions, 17-21, 105
recursion, 104-105
Endian, 142-144
Error handling

binary search, 106-107 /




248

Index

Error handling (cont.)
bugs in RemoveHead, 42,
43
stack implementation,
31-33
Errors
checking for, 15-16
rounding, 125-127
Escaping the train, 189-191
Estimation problems,
163-164
Examples, 14, 15, 16
Experience
questions about, 214, 217
resume presentation, 229,
238
Expert C Programming: Deep
C Secrets, 77n
Explanations to interviewer
alternative implementa-
tions, 16
brainteasers, 162
complexity of solution, 16
mth-to-last element, 44
problem restrictions, 14
problem-solving process,
13, 14-15
running time of solution,
16
Exploding signing bonus, 7
Extern storage class, 197

F
Faster disk access, 207-208
First elements, linked lists,
24-25, 36
First non-repeated charac-
ter, 80-83
Focusing content, on
resumes, 229-230
Formatting resumes, 229
FORTRAN, 12
Four-dimensional hyper-
cubes, 183-185
Fox and duck, 185-188
diagram, 187
duck’s strategy, 186-188
fox’s strategy, 186
obvious strategy, 185-186

Fractional weighings,
175-176, 176n
Friend class, 197

G
Garbage collection
advantages, 206
defined, 205
efficiency problems, 206
mark and sweep, 206-207
reference counting, 206
General computer knowl-
edge; See Knowledge-
based questions
Generalizing solutions
counting cubes, 182183,
184-185
count open lockers, 166
heavy marble, 174-176
Graphical /spatial puzzles,
177-191; See also Brain-
teasers
diagrams, 177-178, 181,
190-191
difficult, 185
mathematics and, 178,
180-181, 184
in motion, 177-178
problems
boat and dock, 178-181
burning fuses, 188-189
counting cubes,181-185
escaping the train,
189-191
fox and duck, 185-188
two- vs. three-dimen-
sional problems, 178
visualization, 178, 181-185
Graphics programming,
125-127
line segment, 126
problems
eighth of a circle,
135-137
rectangle overlap,
137-142
scan conversion, 135
special cases, 126-127
Graphs, 59, 6667

GROUP BY clause, 131-132,
150

H
Hand-held personal orga-
nizer, 210-211
Hard drive access, speeding
up, 207-208
Hashtables, 16, 81, 82-83, 85
binary search trees vs.,
210-211
Headhunters, 2, 2n, 3
Head pointer, 24-25
modifying, 25-26, 36
Heaps, 65
Heavy marble, 171-176
binary search strategy,
172-173
generalizing solution,
174-176
information flow perspec-
tive, 173
reformulate question,
174-175
three-group technique,
173-176
Hiring managers, 6, 7
Hormner’s Rule, 94

|
If statements, 117
Including file commands,
196
Information flow perspec-
tive, 173
Inheritance, 198, 202-203,
204
Inline functions, 201-202
In-order traversal, 66
InsertAfter, 36, 4041
Insertion
arrays, 76
binary search trees, 64
doubly linked lists, 28
linked list tail pointer
maintenance, 3641
singly linked lists, 27
INSERT statements, SQL,
129, 148



Index 249

Integer/string conversions,
92-99
Horner’s Rule, 94
IntToStr function, 95-99
modulo-based approach,
9697
negative numbers, 94-95,
97
StrToInt function, 93-95
Internet
cryptography, 209-210
job application process
and, 2,3
resume submission by, 3
Interviews; See also Job
application process
brainteasers; See Brain-
teasers
contact information,
obtaining, 6
dining out guidelines,
4-5
dress code for, 5
knowledge-based ques-
tions; See Knowledge-
based questions
non-technical questions;
See Non-technical
questions
on-site, 4-5
programming problems;
See Programming
problems
recruiter’s role in, 5
screening, 4
Irrelevant items, on
resumes, 230-231
Iterative solutions, recur-
sion vs., 104-105, 108

J

Java, 12
array treatment, 77-78
bit operators, 127, 127n
C++ vs,, 195196
concurrency implementa-

tion, 134-135, 155-157

design goals, 195
features of, 195-196

garbage collection,
205-207
hashtables, 82-83
linked lists, 24
strings, 79-80
trees, 59
Unicode and, 82
JavaScript, 12
Job application process, 1-9
contacting companies, 1-3
headhunters, 2-3
Internet for, 2, 3
interviews; See Interviews
networking, 1-2
offers and negotiation; See
Offers and negotiation
recruiters, 56, 7
resumes; See Resumes
traditional search meth-
ods, 3
Job change, reasons for,
217-218
Job fairs, 3

K
Knowledge-based ques-
tions, 193-211
problems

argument passing,
199-201

class vs. struct in C++,
197-198

cryptography, 209-210

C++ vs. Java, 195-196

database advantages,
208-209

faster disk access,
207-208

friend classes in C++, 197

garbage collection,
205-207

hashtables vs. binary
search trees, 210-211

including files, 196

inheritance, 202-203

macros and inline func-
tions in C++, 201-202

network performance,
207

new cryptography algo-
rithms, 210
object-oriented program-
ming, 203-204
parent-child class rela-
tionship in C++,
198-199
storage classes in C,
196-197
32-bit operating system,
207
thread programming
issues, 204-205
purpose of, 194
resume, 193-194
specific answers to,

194-195

L

Languages; See Program-
ming languages

Last-in-first-out (LIFO) data
structure, 29
Latency, 207
Least-significant byte (LSB),
143-144
Leaves, 61
Left child node, 61, 62, 63
Length, of resumes, 227, 238
Linked lists, 16, 23-57
C/C++and, 24
circular, 29, 206
cyclic, 53-57
doubly linked lists, 28-29,
47-53
dynamic arrays vs., 30
error handling, 42, 43
first elements, 24-25, 36
interviewers” use of, 23
NULL-terminated
(acyclic), 53-57
problems
bugs in RemoveHead,
41-43
list flattening, 47-53
maintain linked list tail
pointer, 36—41
mth-to-last element of
linked list, 4347



250

Index

Linked lists, problems (cont.)
null or cycle, 53-57
stack implementation,

29-35
programming traps, 24-25
singly linked lists; See
Singly linked lists
special cases, 24, 36, 41
Lisp, 12, 205
List flattening, 47-53
data structure, 48
deducing algorithm, 49-51
ordering of nodes, 49
tree traversal algorithm,
4849
unflatten list, 51-53
Livelock, 204-205
Lookup operation
arrays, 76
trees, 6264
Loop index dependent con-
ditionals, 117
Loop partitioning, 117
Lowest common ancestor,
71-73
LSB (least-significant byte),
143-144

M
Macros, 201-202
Maintain linked list tail
pointer, 36-41
Delete, writing, 3740
head element case, 37
InsertAfter, writing, 4041
last element case, 38-39
list length problems, 37,
3940
middle element case, 37-38
NULL pointer arguments,
38-39
special cases, 36, 41
Management skills, 238
Mark and sweep process,
206-207
Marketing tool, resumes as,
226227, 238
Masks, 145-146
Mathematics, brainteasers
and, 160, 180-181, 184

Max, no aggregates, 150-152
MAX aggregate, 131
Max values, heaps and, 65
Measuring puzzle, 171-176;
See also Brainteasers
Memory management,
garbage collection,
205-207
Microsoft, brainteasers and,
159, 163
MIN aggregate, 131
Modulo, 96, 96n
Most-significant byte
(MSB), 143-144
Motion, in graphical/spa-
tial puzzles, 177-178
MSB (most-significant
byte), 143-144
Mth-to-last element of
linked list, 4347
explanation to inter-
viewer, 44
storing elements, 4445
testing each element, 44
two-pointer solution, 4647
Multidimensional arrays,
76n
Multilevel data structures,
47,48

N
Negative numbers
integer/string conver-
sions, 94-95, 97
number of one bits, 146
Negotiation; See Offers and
negotiation
Networking, 1-2
Network performance, 207
NewSemaphore function,
133
Next pointer (reference), 24
Nodes, 59-60
list flattening, 47-53
root, 60
Non-technical questions,
213222
experience, 214, 217
fit with organization,
214-215

importance of, 213
purpose of, 214
question topics
career goals, 217
compensation, 218-221
experience, 217
favorite programming
language, 216
hiring, reasons for,
221-222
job change, reasons for,
217-218
questions for inter-
viewer, 222
salary history, 221
work desired, 215-216
work style, 216-217
team concept, 214-215
Nontraditional solutions,
brainteasers, 167
Notify /notifyAll, thread
programming, 135,
155
NOT operation, 127128
Null or cycle, 53-57
already-encountered list,
55
differentiate cyclic/acyclic
lists, 54
two-pointer solution,
55-57
NULL pointers
argument passing, 200
binary trees, 61
bugs in RemoveHead, 43
doubly linked lists, 28
maintain linked list tail
pointer, 37, 39, 42, 43,
46
singly linked lists, 24
stack implementation, 31,
32,33
traversing and, 26
NULL-terminated (acyclic)
linked lists, 53-57
Number of ones, 145-148

o
Object-oriented program-
ming (OOP), 203-204



N

Index 251

Obvious solutions, brain-
teasers, 160, 168, 176,
185-186

Offers and negotiation, 6-9,
218-221

accepting and rejecting
offers, 7, 8-9, 221

benefits/perks, 221

considering, 7

hiring managers and, 6, 7

doing homework, 219

non-negotiable factors,
221

ranges, 219-220

recruiter’s role in, 5-6, 7

salary reviews, 221

On-site interviews, 4-5; See
also Interviews

Optimization

CompareToAll, 21
SQL, 132

Ordering puzzle, 167-171;
See also Brainteasers

OR operation, 128

Over-locking, 205

P
Padding resumes, 194, 227
Palm Pilot, 210
Parent class, 198-199
Parent node, 60
Perl, 12
array treatment, 78
combinations of a string,
117
garbage collection, 206
linked lists, 24
local variable declara-
tions, 112n
permutations of a string,
111-112
reference counting, 206
remove specified charac-
ters, 8687
reverse words, 92
strings, 80
Permissions, SQL, 132
Permutations of a string,
108-113
C solution, 112-113

define all allowable let-
ters, 110
manual example, 109-110
Perl solution, 111-112
style /performance trade-
off, 110n-111n
Pixels, 125-126, 135
Pointer constant, 77, 77n
Pointers
for argument passing,
200
constant, 77n, 200
current, 4647
dangling, 206
deletion and, 27-28
head, 24-26, 36
insertion and, 27, 28n
next, 24
NULL; See NULL pointers
pointer constant, 77, 77n
previous, doubly linked
lists, 28
reference to, 200-201
tail; See Tail pointers
two-pointer solutions
mth-to-last element of
linked list, 4647
null or cycle, 55-57
void pointer storage, 30
Pop routines, 29, 30-34,
70-71
Portability, 195, 198
Postorder traversal, 66
Preemptive multitasking,
207
Preorder traversal, 66,
67-69
no recursion, 69-71
Previous pointers, 28
Printing resumes, 232
Process isolation, 207
Producer/consumer,
152-157
buffer protection, 152-153
C solution, 152-155
efficiency bug, 153-155
Java solution, 155-157
Product version numbers,
on resumes, 228
Professional associations, 3

Programming languages,
11-13; See also individ-
ual languages

advanced, 16~17
efficiency trade-offs, 92
favorite, 216

linked list questions, 24

Programming problems,

11-21
arrays; See Arrays
big-edian/little-endian
determination, 142-144
bit operators, 127-128,
145-148
concurrency; See Concur-
rency
difficulty, order of, 13
graphics, 125-127, 135-142
linked lists; See Linked
lists
the process, 11-13
purpose of, 12-13
recursion; See Recursion
requirements/ restrictions,
13-14
solving, 14-17
advanced languages
and, 16-17
algorithm, determining,
14-15
analysis of solution,
17-21
asymptotic running
time, 19
big-O run-time analysis,
17-21
checking solution, 15-17
comparing to NULL or
0,17
data structures and,
16~17
efficiency of solution,
17-21, 105
error and special cases,
15-16, 41,42, 43
examples, 14, 15, 16
explanations to inter-
viewer, 13, 14-15
factual questions,
asking, 15




Index

Programming problems,
solving, (cont.)
getting stuck, 16~17
understanding of prob-
lem, 14-15
writing code, 12, 15-16,
17
special-case solutions, 90
SQL; See Structured query
language (SQL)
strings; See Arrays
trees; See Trees
Prolog, 12
Proofreading resumes,
231-232
Public key cryptography,
209-210
Pure virtual methods, 198,
199
Push routines, 29, 30-34,
70-71
Python, 12

Q
Questions
about programming prob-
lems; See Programming
problems
about resume, 193-194
knowledge-based; See
Knowledge-based
questions
non-technical; See Non-
technical questions

R
Race condition, 204
Random access, 30
Raster pixel display, 125,
135
Recruiters, 5-6, 7
high-pressure tactics, 7
interviews and, 5
offers and negotiation,
5-6,7
questions for, 6
understanding motivation
of, 5
Rectangle overlap, 137-142
DeMorgan’s law, 141-142

test for no overlap,
141-142
test for overlap, 138-141
Recursion, 101-124
“arms length,” 111n, 115n
efficiency of, 104-105
factorial example, 102, 103
loop partitioning, 117
problems
binary search, 106-108
combinations of a string,
113-117
permutations of a string,
108-113
telephone words,
117-124
recursive/base cases,
101-102, 110n-111n
recursive function calls,
105
solution analysis, 17
style/ performance trade-
off, 110n-111n, 115n
tail, 102n
traversals and, 66, 67-71
tree operations and, 64
uses of, 101
wrapper function,
102-104, 112, 116
Recursive case, 101-102,
110n~111n
Recursive function calls,
105
Red-black tree, 64n
Reference counting, Perl, 206
References, 200-201
Reformulating question,
174-175
Register storage class, 196
Rejecting offers, 8-9
RemoveHead, bugs in,
4143
Remove specified charac-
ters, 83-87
Perl solution, 86-87
string buffer, 84-85
Restricted brainteasers,
162-163
Resumes, 223244
bulleted lists, 229, 230

buzzwords, 228
experience, presentation
of, 229, 238
focusing content, 229-230
formatting, 229
importance of, 223
interview questions about,
193-194
irrelevant items, 230-231
length of, 227, 238
management skills, 238
as marketing tool,
226227, 238
organizing, 231
padding, 194, 227
printing, 232
product version numbers,
228
proofreading, 231-232
for senior positions, 234,
238
skills, explicit listing of,
228-229
submitting via Internet, 3
technical, requirements
for, 223
underselling, 229-230
Reverse words, 87-92
Perl solution, 92
with reverse string func-
tion, 90-92
token scanner-based
implementation, 87-90
Right child node, 61, 62, 63
Root node, 60
Rounding, graphics pro-
gramming, 125-127,
136-137
Run-time analysis; See Big-
O analysis

s

Salary history, 221

Salary offers; See Offers and
negotiation

Salary reviews, 221

Scan conversion, 135

Screening interviews, 4

Searches, 65-66

Security, 195




Index

253

cryptography, 209-210
SQL, 132
SELECT statements, SQL,
129-131
Semaphores, 133-134,
152-155
Senior positions, resumes
for, 234, 238
Shared key cryptography,
209-210
Shift operators, 128
Signal function, thread pro-
gramming, 133, 134
Signing bonuses, 7, 8, 219
Simple/restricted brain-
teasers, 162-163
Simple SQL, 148; See also
Structured query lan-
guage (SQL)
Singly linked lists, 24-28
deletion, 27-28
head pointer, modifying,
25-26
insertion, 27
problems; See Linked lists
traversing, 26-27
Skills
explicit listing of on
resumes, 228-229
management, 238
Spatial puzzles; See Graphi-
cal/spatial puzzles
Special cases
checking for, 15-16
graphics programming,
126-127
linked lists, 24, 36, 41
maintaining linked list tail
pointer, 36, 41
Stack implementation,
29-35
C++and, 34-35
CreateStack function,
32-33
DeleteStack function,
32-33
error handling, 31-33
preorder traversal, no
recursion, 69-71

purpose of problem, 29

push and pop routines, 29,

30-34, 70-71
void pointer storage, 30
Stacks, 29

Static storage class, 197

Stock options, 7, 8, 219
Storage classes in C,
196-197
String bulffer, 80
with multithreaded pro-
grams, 152-157
remove specified charac-
ters, 84-85
reverse words, 87-90
Strings, 75, 78-80
ASCII, 82, 85, 92-99
C programming language,
79
C++,79
Java, 79-80
NUL terminator, 79
Perl, 80
problems; See Arrays
Unicode, 82
Structs, 59
classes vs., 197-198
Structured query language
(SQL), 129-132
aggregates, 131-132
common key, 131
INSERT statements, 129,
148
problems
company and employee
database, 148-150
max, no aggregates,
150-152
simple SQL, 148
SELECT statements,
129-131
SUM aggregate, 131, 150
Symmetric key cryptogra-
phy, 209-210
Synchronized keyword,
134-135, 155

T

Tail pointers
linked lists and, 42, 43, 46
list flattening, 50-51

maintaining; See Maintain
linked list tail pointer
Tail recursion, 102n
Tel, 12
Team concept, 214-215
Technical resumes, 223
Telephone words, 117-124
manual example, 118-120
non-recursive solution,
121-124
recursive solution,
120-121
term definitions, 118
32-bit operating system,
207
Thread programming; See
Concurrency
Three-dimensional prob-
lems, 178, 181-183
Three-group measuring
technique, 173-176
Three switches, 166167
Toggling problem, 164-166
Token scanner, reverse
words, 87-90
Traversals
doubly linked lists, 28
in-order, 66
list flattening and, 4849
postorder, 66
preorder, 66, 67-71
recursion and, 66, 67-71
singly linked lists, 26-27
trees, 4849, 66
Trees, 59-73
balanced, 64
binary, 61-65
binary search; See Binary
search trees (BSTs)
breadth-first searches,
65-66
depth-first searches, 66
heaps, 65
lookup operation, 62-64
problems
lowest common ances-
tor, 71-73
preorder traversal, 6769
preorder traversal, no
recursion, 69-71




254

index

Traversals, problems, (cont.)
recursive thinking and,
64
recursive implementa-
tions, 64
red-black, 64n
searches, 65—66
traversals, 4849, 66
vocabulary, 60-61
Two-dimensional problems,
178

U

Unary operator, 127-128

Underselling, on resumes,
229-230

Undirected graph, 67

Unflattening list, 51-53

Unicode strings, 82

Union types, 16, 144

UPDATE statements, SQL,
132

\')

Value, argument passed by,
200

Virtual methods, 198-199

Visual Basic, 12

Visualization,
graphical/spatial puz-
zles, 178, 181-185

Void pointer storage, 30

w

Wait function, 133-135,

155

Weighing puzzle, 171-176;
See also Brainteasers

Windows NT, 207

Work experience; See Expe-
rience

Work style, 216-217

World Wide Web; See Inter-
net

Wrapper function, 102-104,
112, 116

X
XOR operation, 12




