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C H A P T E R    O N E 

Introduction 

 
It is estimated that the total amount of information in the world doubles every 20 
months.1 This data explosion has meant that the size of databases as well as their 
numbers have increased dramatically. It is an increasing challenge to make efficient use 
of this vast amount of information. 
 
As a result of this trend, the field of Knowledge Discovery has been developed to manage 
and manipulate this data in an efficient manner. Data Mining  is a set of techniques that 
have been developed to extract useful information from this sea of knowledge. Data 
Mining has wide-ranging applications in a number of fields from the commercial to the 
academic spheres. 
 
 
1.1  Statement of Problem 
 
The study of celestial objects is called Astronomy. Modern methods involve a lot of 
information in the form of tabular databases as well as photographic data. These tabular 
databases are popularly called catalogues. Catalogues range from a few thousand to many 
million entries in size. While studying groups of stars, of particular interest are aggregates 
of stars occurring densely together. These clusters consist of groups of stars bound 
together by mutual gravitational attraction and detecting them required specialised 
techniques. 
 
We are interested in detecting such clusters from astronomical databases. Once detected, 
we would like to analyse these clusters to study useful properties. The information that is 
extracted from these large databases should also be displayed to the user in a form that is 
clearly understandable. Thus we can clearly define the aim of our project. 
 
 

Aim: To detect, analyse and visualise spatial clusters from astronomical 
databases. 

                                                 
1 http://bioinfo.weizmann.ac.il/cards/knowledge.html 
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1.2 Scope of Problem 
 
The scope of our project can be explained as follows: 
 

• A large number of astronomical catalogues are available for analysis. However, we 
restrict the scope of our search to the Tycho and Hipparcos2 catalogues. 

 
• To allow us to access large astronomical databases quickly, we need to develop an 

index based search pro cedure. As each star is uniquely by its position in the sky, 
namely Right Ascension and Declination3, this index needs to be two-dimensional. 

 
• To detect the clusters, we need to adopt a suitable technique. The databases are very 

large in size and hence this problem is a good candidate for the application of Data 
Mining techniques. We can use a suitable Clustering algorithm4 for the detection of 
spatial clusters. We make use of the WaveCluster5 algorithm in our project. 

 
• To carry out the analyses of the detected clusters, we use the Hertzsprung-Russel6 

diagram. We further analyse the cluster by computing useful statistics. 
 

• The results of the clustering process are provided to the user in a graphical format 
by  

i. Plotting the cluster as it would appear in the sky. 
ii. Displaying the cluster in terms of Galactic Co-ordinates7. 

 
 
1.3  Requirements Analysis 
 
The solution should satisfy the following requirements: 
 

• The software should allow the user to specify a search window to carry out the 
mining in a particular area of interest. 

 
• The user should be allowed to carry out the mining at different resolutions. 

 
• The software should be efficient enough to carry out mining in real-time. 

 

                                                 
2 Refer section 2.2 for detailed information 
3 Refer section 2.3.1 for detailed information 
4 Refer section 4.4 for detailed information 
5 Refer chapter 5 for detailed information 
6 Refer section 6.1 for detailed information 
7 Refer section 7.2 for detailed information 
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• The results of the analysis should be presented such that the user is easily able to 
isolate the stars occurring in the cluster from the ones in the background. 

 
• The visualisation should be quick enough to be executed whenever desired by the 

user. 
 

• The analysis should be rigorous enough to allow the user to identify legitimate 
clusters from artificial ones. 

 
• The user should be allowed to save legitimate clusters and later retrieve the mined 

data. 
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C H A P T E R    T W O 

Astronomical Data 

 
2.1  Astrometry 
 
Astrometry is a part of Astronomy that deals with the positions of stars and other celestial 
bodies. It is one of the oldest areas of Astronomy, dating back to Hipparchus, who 
compiled the first catalogue of stars visible to him and in the process, he invented the 
brightness scale basically still in use today.8 The major objective of Astrometry is to 
provide a non-rotating stellar reference frame, which can be used to locate the position 
of all celestial bodies in the galaxy. Using this reference frame, we can obtain basic 
observational data for the study of stellar properties such as mass, luminosity, spatial 
distribution and their motions. 
 
 
2.2 The Hipparcos Space Astrometry Mission 
 
A large number of astronomical missions have been dedicated to the task of collecting 
accurate data about celestial objects. These missions collect celestial data by dividing the 
sky into a number of smaller portions, focusing on portions one by one and then 
merging the collected data. The data collected during these missions is available in the 
form of catalogues and helps astronomers in gaining in-depth knowledge about the 
objects to be studied. In our project we are focusing on the Hipparcos and the Tycho 
catalogues.  
 
Named after the second century BC astronomer Hipparchus, Hipparcos or the High 
Precision PARallax COllecting Satellite was launched on 8th August 1989. The main 
instrument was designed to measure about one hundred thousand stars, the least intense 
of which were about 12 mag. The payload also included two star mappers, which were 
used by the Tycho experiment to perform astrometric and two-colour photometric 
measurements of about one million stars, the least intense of which were about 10-11 
mag. The Hipparcos contains details of about 1,18,000 stars and contains 77 fields, and 
the Tycho catalogue contains details of 1 million stars specified using 57 fields. The basic 
fields of these catalogues specify the position of the star, its intensity, parallax etc. Other 
fields in the catalogues are for the purpose of easy identification and organisation. 

                                                 
8 To understand the magnitude scale, refer to Section 2.4. Lower magnitudes corresp ond to brighter 
stars. 



AstroMiner: Data Mining of Astronomical Databases 

 

5 

2.3 Astrometric Data 
 
For the purpose of our project we would be focusing on the positional information of 
the stars. Some fields pertaining to positional information are as follows. 
 
2.3.1 Right Ascension and Declination 
 
Astronomers have been using various reference systems for locating the positions of 
heavenly bodies. M ost of the systems are based on the model of celestial sphere. 
 
Celestial sphere is a sphere of infinite radius with observer on earth as center. The distant 
stars are projected over this sphere. One of the most popular methods uses Right 
Ascension (RA) and Declination (DEC) to specify the co -ordinates of stars. The Tycho 
contains the position of about one million stars as described by their RA and DEC. 

Celestial equator is a circle where the celestial sphere cuts the earth’s equatorial plane. The 
lines of Declination are as shown, parallel to celestial equator in figure 2.1. DEC is 
measured in Degree: Minute: Second. The declination of celestial North Pole is +900 and 
that of celestial South Pole is -900 . 

                                                                                                      
Figure 2.1 also explains the Right Ascension. The reference used for measurement of RA 
is the great vertical circle that passes through vernal equinox.  
 
Vernal equinox  is the point where ecliptic cuts celestial sphere on March 21st. Ecliptic is 
the path of the sun across celestial sphere. RA is measured in Hour: Minute: Second. 

 
 
Lines of Declination 

Earth 

Celestial Equator 
 
 

Celestial North 
Pole 

 

Celestial South 
Pole 

 

Ecliptic 
 

Lines of RA 
 

Figure 2.1 RA and DEC 
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2.3.2 Parallax  
 
There is an apparent shift in the position of the stars when viewed from two widely 
separated points. Due to revolution of earth around the sun, this apparent shift is 
observed. This shift, called Parallax, can be measured as angle in mas (milli arc second). 
Accurate distances of stars can be calculated if parallax is measured accurately. Due to 
parallax, the position of star x appears to be in the direction of a at one position and in 
direction b at another. Thus, parallax provides information about a star’s distance from 
the Earth.  

 
2.3.3 Proper Motion 
 
Apart from the motion due to parallax, some stars actually move in particular directions. 
This motion of stars is called Proper Motion. As the star moves from A to B it moves 
through angle µ. The angle through which a star appears to move in one year is called the 
Proper Motion of star. Proper Motion can be resolved in radial and tangential 
components. This is measured in mas/yr. Thus RA (proper motion) and Dec (proper 
motion) specify proper motion. 

Sun 

x 

b a 

Earth 
Figure 2.2 Parallax 

µ 

A B 

Radial Component 
 

Tangential 
Component 

Sun 

Figure 2.3 Proper Motion 
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2.4 Photometric Data 
 
Apart from the positional or astrometric data the catalogues also contain important data 
pertaining to the brightness, intensity and colour of the celestial object. This data is also 
known as photometric data. Some important fields of photometric data are as follows. 
 
2.4.1 Visual Magnitude 
 
The Visual or Apparent Magnitude of a star approximates to the brightness of the star as 
seen by the unaided eye. This magnitude may be designated as V for visual. An 
important feature of this is that the brighter the star less is its visual magnitude. In fact, 
an increase in the brightness of a star by a factor of 2.5 corresponds to a decrease of 
visual magnitude by 1. To obtain this magnitude the brightness of the star is measured 
through a yellow colour filter. The reason yellow is chosen is that it is at the center of the 
visible spectrum. 
 
2.4.2 Photographic Magnitude 
 
Currently photometry is carried out with electronic instruments, but in earlier years 
photometry was carried out by measuring the exposure produced by the image of a star 
on a photographic plate. In comparison with the response of the human eye, a 
photographic emulsion is relatively more sensitive to short wavelength blue light than it 
is to red. Thus a blue star would produce more exposure on a photographic emulsion 
than would be expected from its visual magnitude, while a red star would produce less 
exposure. Therefore, the unfiltered photographic image of a star gives a measure of the 
star’s magnitude weighted towards the blue end of the spectrum. This is the B (for blue) 
or Photographic Magnitude. (Optical and electronic filtering allow modern electronic 
detectors to approximate the colour response of the eye or of a photographic emulsion.) 
 
2.4.3 Colour Index 
 
The difference B - V between the two magnitude estimates is known as the B- V Colour 
Index of the star. It gives a numerical measurement of the colour of a star. For blue stars 
it will be negative, while for very red stars, it will be a positive number. 
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C H A P T E R    T H R E E 

Indexed Access of Astronomical Data 

 
The Hipparcos catalogue contains around 118,000 records while the Tycho catalogue 
contains around 1,000,000 records. As a result, quick and efficient access of the records 
plays an important role in any application based on these catalogues. For the purpose of 
detecting star clusters, we require to find stars that lie within a given range of Right 
Ascension (RA) and Declination (DEC). Thus, the database can be considered to be a spatial 
(two-dimensional) database with RA and DEC as the key fields. 
 
 
3.1 Sequential Search  
 
The simplest form of search, the Sequential search would be highly inefficient as it would 
take on an average n / 2 comparisons to search in a file containing n records. In our case, 
it would take on average 60,000 and 500,000 comparisons respectively to search in the 
Hipparcos and Tycho catalogues. 
 
 
3.2 Indexed Search  
 
An index based on the spatial nature of the database is desirable. Classical one-
dimensional index structures such as B-Trees will not work since the search space is two-
dimensional. Structures based on exact matching of values, such as Hash Tables are not 
useful because a range search is required. Two-dimensional index structures are ideally 
suited to our applications. We consider the following structures. 

 
 
• k-d Tree 
• QuadTree 
• R-Tree 
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3.2.1 k-d Trees 
 
Each level of a k-d Tree partitions the space into two in such a way that at each node, 
approximately one-half of the points stored in the sub -tree fall on one side, and one-half 
on the other. The partitioning is done along one dimension at the node at the top level of 
the tree, along the second dimension in nodes at the next level and so on, cycling 
through the dimensions. Partitioning stops when a node has less than a given maximum 
number of points. 

 
3.2.2 QuadTree 
 
Each node of a Quadtree is associated with a rectangular region of space. The top node is 
associated with the entire sample space. Each non-leaf node in a Quadtree divides its 
region into four equal-sized quadrants corresponding to four child nodes. Leaf nodes 
have between zero and some fixed maximum number of points. Hence, if a region 
corresponding to a node has more than the maximum number of points, child nodes are 
created for that node. 

3 3  
 
 
 
2 

        3          1                       3 

2 

Figure 3.1 k-d Tree 

Figure 3.2 QuadTree 
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The disadvantages of using k-d trees and Quadtrees for our application are as follows: 
• Many of the entries within a node are wasted because of the rigid rules for the 

splitting of a node. As a consequence, the memory space required to store the tree is 
more. 

• The height of the tree may be arbitrarily large. As a result, searching requires more 
number of steps. 

To overcome these practical difficulties, we use a more dynamic indexing structure called 
R-Trees that represents data objects by intervals in more than one dimension. 
 
 
3.3 R-Tree 
 
An R-Tree is a height-balanced tree similar to a B-Tree with index records in its leaf nodes 
containing pointers to data objects. The Hipparcos and Tycho catalogues consist of a 
collection of records representing stars. Each record has an Offset-value that gives the 
position of the record within the catalogue file.  
 
Leaf nodes in the R-Tree contain index record entries of the form  

( I, Offset-value ) 
where I is the two-dimensional position identifier of the star indexed. Therefore, 

I = ( RA, DEC) 
 
Non-leaf nodes contain entries of the form 

( I, Child-Pointer  ) 
where Child-Pointer is the address of a lower node in the R-Tree and I is the smallest 
rectangle that covers all the rectangles in the lower node’s entries. Therefore, 

I = ( RAmin, DECmin, RAmax, DECmax ) 
 
Let M be the maximum number of entries that will fit in one node and let m <= M / 2 
be a parameter specifying the minimum number of entries in a node. Hence, each node 
(except the root) contains between m  and M number of entries. The root node has atleast 
two children unless it is a leaf. 
 
The height of an R-Tree containing N index records is at most | logmN | - 1. For our 
application we have selected M = 20 and m = 10. With these values of m and M, the 
maximum height of the tree for both the Hipparcos catalogue (N = 100,000) and the 
Tycho catalogue (N = 1,000,000) is just 6. 
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Figure 3.3 S ample space and the corresponding R-Tree. 

We have taken M = 3 and m = 2. 
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In the algorithms that follow, we denote the rectangle part of an index entry E by EI and 
the Offset-value or Child-Pointer by Ep. 
 
3.3.1 Searching in an R -Tree 
 
The search algorithm descends the tree from the root. However, more than one sub-tree 
under a node visited may need to be searched, hence it is not possible to guarantee good 
worst-case performance. Generally, the tree is maintained in a form that allows the 
search algorithm to eliminate irrelevant regions of the indexed space and examine only 
data near the search area. Along any one path, the minimum and maximum number of 
checks is equal to | logmN | and | logmN | * M respectively. With respect to the 
catalogues we are using, this gives a minimum and maximum value of 6 and 120 
respectively. This number is very small in comparison with the number of checks 
required for Sequential search. 
 

• Algorithm Search 
Given an R-Tree whose root node is T , find all index records whose rectangles 
overlap a search rectangle S. 

 
1. If T  is not a leaf, check each entry E  to determine whether EI overlaps S. For all 

overlapping entries, invoke Search on the tree whose root node is pointed to by 
Ep. 

2. If T  is a leaf, check all entries E to determine whether EI overlaps S. If so, E is a 
qualifying record. 

 
3.3.2 Creation of an R-Tree 
 
During the insertion of index records for new data records into an R-Tree, the new index 
records are added to the leaf nodes, nodes that overflow are split, and splits propagate up 
the tree. 
 

• Algorithm Insert 
Insert a new index entry E into an R-Tree 

  
1. Invoke ChooseLeaf to select a leaf node L in which to place E . 
2. If L has room for another entry, install E . Otherwise invoke SplitNode to obtain 

two leaf nodes L and LL containing E and all the old entries of L. 
3. Invoke AdjustTree on L, also passing LL if a split was performed 
4. If node split propagation caused the root to split, create a new root whose 

children are the two resulting nodes. 
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• Algorithm ChooseLeaf 
Select a leaf node in which to place a new index entry E. 

 
1. Set N to be the root node. 
2. If N is a leaf, return N. 
3. If N is not a leaf, let F be the entry in N whose rectangle EI needs the least 

enlargement to include EI. Resolve ties by choosing the entry with the rectangle 
of smallest area. 

4. Set N to be the child node pointed to by Ep and repeat from Step 2. 
 

• Algorithm AdjustTree 
Ascend from a leaf node L  to the root, adjusting covering rectangles and 
propagating node splits as necessary. 

 
1. Set N = L. If L was split previously, set NN to be the resulting second node.  
2. If N is the root, stop. 
3. Let P be the parent node of N, and let EN be N ’s entry in P . Adjust ENI so that it 

tightly encloses all entry rectangles in N. 
4. If N has a partner NN resulting from an earlier split, create a new entry EN N with 

ENNp pointing to NN and ENNI enclosing all rectangles in NN. Add ENN to P if 
there is room. Otherwise, invoke SplitNode to produce P and PP containing ENN 
and all P ’s old entries. 

5. Set N = P and set NN = PP if a split occurred. Repeat from Step 2. 
 
3.3.3 Node Splitting 
 
In order to add a new entry to a full node containing M entries, it is necessary to divide 
the collection of M + 1 entries between two nodes. The division is done in a way that 
makes it as unlikely as possible that both new nodes will need to be examined on 
subsequent searches. Since, the decision whether to visit a node depends on whether its 
covering rectangle overlaps the search area, the total area of the two covering rectangles 
should be minimized. As shown in figure 3.4, the area of the covering rectangles in the 
“bad split” case is much larger than in the “good split” case.  

Bad Split Good Split Figure 3.4 Node Splitting 
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• Algorithm SplitNode –  
Divide a set of M + 1 index entries into two groups. 

 
1. Apply algorithm PickSeeds to choose two entries to be the first elements of the 

two groups. Assign each to a group. 
2. If all entries have been assigned, stop. If one group has so few entries that all the 

rest must be assigned to it in order for it to have the minimum number m, assign 
them and stop. 

3. Invoke algorithm PickNext to choose the next entry to assign. Add it to the group 
whose covering rectangle will have to be enlarged the least to accommodate it. 
Resolve ties by adding the entry to the group with smaller entries and then to one 
with fewer entries. Repeat from Step 2. 

 
• Algorithm PickSeeds –  

Select two entries to be the first elements of the groups. 
 

1. For each pair of entries E1 and E2, compose a rectangle J including E1I and E2I. 
Calculate d = area ( J )  –  area ( E1I )  –   area ( E2I ). 

2. Choose the pair with the largest d. 
 

• Algorithm PickNext –  
Select one remaining entry for classification in a group. 

 
1. For each entry E not yet in a group, calculate d1 = area increase required in the 

covering rectangle of Group 1 to include EI. Similarly, calculate d2 for Group 2. 
2. Choose any entry with the maximum difference between d1 and d2 . 

 
3.3.4 Index on File 
 
In our application we will be dealing with databases that have entries of the order of a 
few million. Creating an index for such a database will be highly time-consuming. The 
efficient solution is to create the index just once and store it on file. We use this index 
every time we run the mining algorithm. 
 
Also, indexing such databases results in indices that are several megabytes in size. 
Loading the entire index in memory every time we run the mining algorithm is a waste of 
valuable physical memory. For very large databases indices may even be larger than total 
physical memory. Our application will read only one entry at a time from the index on 
the file. Thus we need a minimum of physical memory and we have very fast access of 
the database using very few file accesses. 
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The Tycho catalogue contains 1058332 entries. The catalogue is about 354 MB in size. 
The index created using 20 entries per node has a height of 6 and is 36.5 MB in size. 
Hence we can search for any entry using 6 file accesses and any path from root to leaf 
will result in a minimum of 6 comparisons and a maximum of 120. 
 
In the algorithms that follow, we denote the rectangle part of an index entry E by EI and 
the Offset-value or Child-Pointer by Ep. For a non-leaf node, Ep gives the offset of the child 
record in the index file. For a leaf node, it gives the record number in the main database. 
 
3.3.4.1 Searching in a File-Based R-Tree 
 

• Algorithm FileIndexSearch 
Given an R-Tree stored on file, find all index records whose rectangles overlap a 
search rectangle S  and create a SearchedFile containing their corresponding record 
numbers in the main database. Let Current-Offset be 0. 

 
1. Read the record T stored at Current-Offset. 
2. If T  is not a leaf, check each entry E  to determine whether EI overlaps S. For all 

overlapping entries, invoke FileIndexSearch with Current -Offset set to Ep. 
3. If T  is a leaf, check all entries E to determine whether EI overlaps S. If so, E is a 

qualifying record and store Ep in SearchedFile . 
 
3.3.4.2 Creating a File-Based R-Tree 
 
Let NodeCount be intialised to 0. Create an empty record at the start of the file. 
 

• Algorithm FileIndexInsert 
Insert a new index entry E into an R-Tree stored on file 

  
1. Invoke ChooseLeaf to select a leaf node record L  in which to place E. 
2. If L has room for another entry, install E in L  and overwrite the old L with the 

updated L. Otherwise invoke SplitNode to obtain two leaf node records L  and LL 
containing E and all the old entries of L. Overwrite the old L with the updated 
L. Write LL at the end of the file. Increment NodeCount by 1. 

3. Invoke AdjustTree on L, also passing LL if a split was performed. 
4. If node split propagation caused the root to split, create a new root whose 

children are the two resulting nodes. Write the root at the end of the file. 
Increment NodeCount  by 1.  
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• Algorithm FileIndexChooseLeaf 
Select a leaf node in which to place a new index entry E. 

 
1. Set Current -Offset to the offset of the root node record. 
2. Read the record N stored at Current-Offset . 
3. If N is a leaf, return N. 
4. If N is not a leaf, let F be the entry in N whose rectangle FI needs the least 

enlargement to include EI. Resolve ties by choosing the entry with the rectangle 
of smallest area. 

5. Set Current -Offset to Ep and repeat from Step 2. 
 

• Algorithm FileIndexAdjustTree 
Ascend from a leaf node record L to the root, adjusting covering rectangles and 
propagating node splits as necessary. 

 
1. Set N = L. If L was split previously, set NN to be the resulting second node.  
2. If N is the root, stop. 
3. Let P be the parent node record of N, and let E N be N’s entry in P. Adjust ENI so 

that it tightly encloses all entry rectangles in N. 
4. If N has a partner NN resulting from an earlier split, create a new entry EN N with 

ENNp pointing to NN and ENNI enclosing all rectangles in NN. Add ENN to P if 
there is room. Otherwise, invoke SplitNode to produce P and PP containing ENN 
and all P ’s old entries.  

5. Overwrite the old P with the updated P .  
6. If a split occurred, write PP at the end of the file. Increment NodeCount by 1. 
7. Set N = P and set NN = PP if a split occurred. Repeat from Step 2. 

 
At the end of inserting all the records, copy the index record corresponding to the root at 
the start of the index file. 
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C H A P T E R    F O U R 

Data Mining Techniques 

 
Data Mining can be defined as follows: 
 

Def. 4.1: Data Mining. Data mining is the exploration and analysis, by 
automatic or semiautomatic means, of large quantities of data in order to 
discover meaningful patterns and rules. 

These meaningful patterns are used to improve business practices including marketing, 
sales, and customer management. The finding of useful patterns in data has been referred 
to as knowledge extraction, information discovery, information harvesting, data 
archaeology, and data pattern processing in addition to data mining. In recent years the 
field has settled on data mining to describe these activities. 
 
 
4.1  Knowledge Discovery in Databases 
 
Statisticians have commonly used the term data mining to refer to the patterns in data 
that are discovered through multivariate regression analyses and other statistical 
techniques. However, as data mining has matured, it is widely accepted to be a single 
phase in a larger process known as Knowledge Discovery in Databases or KDD for 
short. The field of KDD is particularly focused on the activities leading up to the actual 
data analysis and includes the evaluation and deployment of results. Following are the 
rudimentary steps involved in KDD. 
 

• Data Selection – The goal of this phase is the extraction of data, relevant to the data 
mining process, from a large store. This data extraction helps to streamline and 
speed up the process.  

 
• Data Preprocessing – This phase of KDD is concerned with data cleansing and 

preparation tasks that are necessary to ensure correct results. Eliminating missing 
values in the data, ensuring that coded values have a uniform meaning and ensuring 
that no spurious data values exist, are typical actions that occur during this phase. 

 
• Data Transformation – This phase of the lifecycle is aimed at converting the data into 

a two-dimensional table and eliminating unwanted fields so the results are valid. 
 



AstroMiner: Data Mining of Astronomical Databases 

 

18 

• Data Mining – The goal of the data mining phase is to analyse the data by an 
appropriate set of algorithms in order to discover meaningful patterns and rules and 
produce predictive models. This is the core element of the KDD cycle. 

 
• Interpretation and Evaluation –  While data mining algorithms have the potential to 

produce an unlimited number of patterns hidden in the data, many of these may not 
be meaningful or useful. This final phase is aimed at selecting those models that are 
valid and useful for making future business decisions. 

 
 

 
 
The KDD process in our project is explained as follows: 
 
The data that is to be used in our project consists of astronomical databases, viz. the 
Hipparcos and Tycho catalogues.  These catalogues are plaintext files, where the records 
are stored in a continuous manner. Thus, though the data represented in the file is 
tabular or two-dimensional data, it is stored on the file in a one-dimensional format. 
Each record is given a unique Record ID  to uniquely identify it and the database is sorted 
on this Record ID. 

Figure 4.1 The Traditional KDD Paradigm 
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As we are using these databases where the data extraction has already taken place, the 
phase of Data Selection is eliminated. These databases have high integrity. There are no 
duplicate values and the unique identifiers for every record, viz. the Record ID and the 
combination of RA and DEC. Hence the phase of Preprocessing can also be eliminated. 
 
Knowing the Record ID, we need to develop a system to access that record directly. In 
other words, we need to be able to access this one-dimensional data as if it were a two-
dimensional table. This is the phase of Data Transformation. This can be done as every 
record is identical in size and the primary key of the database is the Record ID. 
 
Suppose we want to access the record whose Record ID is x. If the size of each record is 
y bytes in length, then the offset  that will give us the start of record x can be calculated as 
follows: 
 

offset = (x – 1) * y 
 

 
Thus, we can directly go to our record of choice and we can access the database as if it 
were in the tabular format. 
 
The phases of Data Mining and Interpretation can now be applied to this transformed 
data to allow the extraction of useful data, viz. spatial clusters of stars and the KDD 
process can be completed. 

Offsets 

Rec ID: 10 Rec ID: 11 Rec ID: 12 Rec ID: 13 

3672 4080
3672 

4488
3672 

4896
3672 

5304
3672 

408 bytes 

Figure 4.2 Organisation of Records in File 
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4.2 Data Mining Processes 
 
Traditionally, there have been two types of statistical analyses - Confirmatory analysis and 
exploratory analysis. In confirmatory analysis, one has a hypothesis and either confirms or 
refutes it. However, the bottleneck for confirmatory analysis is the shortage of 
hypotheses on the part of the analyst. In "exploratory analysis”, one finds suitable 
hypotheses to confirm or refute. Here the system takes the initiative in data analysis, not 
the user. From a process-oriented view, there are three classes of data mining activity: 
discovery, predictive modeling and forensic analysis, as shown in Figure 4.3. 
 

Discovery is the process of looking in a database to find hidden patterns without a 
predetermined idea or hypothesis about what the patterns may be. In other words, the 
program takes the initiative in finding what the interesting patterns are, without the user 
thinking of the relevant questions first. In large databases, there are so many patterns that 
the user can never practically think of the right questions to ask. The usefulness of this 
technique is determined by the richness and transparency of the patterns discovered and 
the quality of the inferred information. 
 
In Predictive Modelling patterns discovered from the database are used to predict the future. 
Predictive modelling thus allows the user to submit records with some unknown field 
values, and the system will guess the unknown values based on previous patterns 
discovered from the database. While discovery finds patterns in data, predictive 
modelling applies the patterns to guess values for new data items. 
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Figure 4.3 Processes in Data Mining 
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Forensic analysis is the process of applying the extracted patterns to find anomalous or 
unusual data elements. To discover the unusual, we first find what is the norm, and then 
we detect those items that deviate from the usual within a given threshold. Note that 
discovery helps us find "usual knowledge," but forensic analysis looks for unusual and 
specific cases. 
 
 
4.3 Data Mining Algorithms 
 
The following are summaries of some of the industry-accepted algorithm types for 
automated data mining.  
 

• Classification Algorithms and Decision Trees – Determines natural splits in the data based 
on a target variable. First splits occur on the most significant variables. A branch in 
a decision tree can be viewed as the conditional side of a rule. 

 
• Rule Association –  Identifies cause and effect relationships and assigns probabilities or 

certainty factors to support the conclusions. Rules are of the form “if <condition>, 
then <conclusion>” and can be used to make predictions or estimate unknown 
values. 

 
• Memory-based Reasoning  (MBR) or Case-based Reasoning (CBR) – These algorithms find 

the closest past analogs to a present situation in order to estimate an unknown value 
or predict an unknown outcome. 

 
• Cluster Analysis – Separates heterogeneous data into homogeneous and semi-

homogeneous subgroups based on the assumption that observations tend to be like 
their neighbours. Clustering increases the ability to make predictions. 

 
• Artificial Neural Networks – Uses a collection of input variables, mathematical 

activation functions, and weightings of inputs to predict the value of target 
variables. Through an iterative training cycle, a neural network modifies its weights 
until the predicted output matches actual values. Once trained, the network is a 
model that can be used against new data for predictive purposes. 

 
• Genetic Algorithms – Uses a highly iterative process of selection, crossover, and 

mutation operations to evolve successive generations of models. A fitness function 
is used to keep certain members and discard others. Genetic algorithms are 
primarily used to optimise neural network topologies and weights. However, they 
can be used by themselves for modeling.  
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4.4 Clustering Algorithms 
 
The process of grouping a set of physical or abstract objects into classes of similar 
objects is called clustering. A cluster is thus a collection of data objects that are similar to 
one another within the same cluster and are dissimilar to the objects in another cluster. 
Clustering thus helps in separating a given dataset into smaller classes and then carrying 
out useful analysis of each class. 
 
4.4.1 Requirements of a good clustering algorithm 
 
The requirements of a good clustering algorithm are listed as follows: 
 

• Scalability – It should be able to deal with data sets containing a large number of 
objects. It should not be affected by the size of the database. 

 
• Ability to deal with different types of attributes – It should not be restricted by the type of 

attribute used for the purpose of clustering. For example some algorithms are 
designed to cluster numerical data, while certain applications may require other 
types of data, such as binary, categorical, etc. 

 
• Discovery of clusters with arbitrary shape – Many clustering algori thms mine clusters 

based on fixed distance measures and hence tend to find spherical clusters with 
similar size and density. However, a cluster could be of any shape and hence a good 
clustering algorithm should be able to detect clusters of any arbitrary shape. 

 
• Minimal requirements of domain knowledge to determine input parameters – Clustering 

algorithms sometimes tend to depend on input parameters such as number of 
clusters in order to carry out the clustering process. However, such data is hard to 
determine and hence a good clustering algorithm should be free from such a 
requirement. 

 
• Ability to deal with noisy data – Most real-world databases contain outliers or missing, 

unknown, or erroneous data. A good clustering algorithm should not be sensitive to 
such data. 

 
• Insensitivity to the order of input records – In some clustering algorithms the output of the 

algorithm depends upon the order in which the input records are presented to the 
algorithm. A good clustering algorithm should be insensitive to the order of input 
data.   
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• High dimensionality – A good clustering algorithm should be able to deal with large 
number of attribute or dimensions present in the database or data warehouse. 

 
• Interpretability and usability – The clustering algorithm should be such that it is easy to 

adapt it with a particular user application and hence should be highly interpretable, 
comprehensible, and usable. 

 
4.4.2 Different Clustering Algorithms 
 
The detention of clusters can be achieved by employing any suitable clustering algorithm . 
The different clustering algorithms can be classified as follows: 

 

 
• Partitioning algorithms –  Partitioning algorithms construct a partition of a database of 

N objects into a set of K clusters. Usually they start with an initial partition and then 
use an iterative control strategy to optimise an objective function. There are mainly 
two approaches, viz. k-means algorithm, where each cluster is represented by the 
center of gravity of the cluster and k-medoid algorithm, where each cluster is 
represented by one of the objects of the cluster located near the center. E.g. PAMS, 
CLARA, CLARANS 

 
• Hierarchical algorithms – Hierarchical algorithms create a hierarchical decomposition 

of the database. The algorithm iteratively splits the database into smaller subsets 
until some termination condition is satisfied. Hierarchical algorithms do not need K 
as an input parameter, which is an obvious advantage over partitioning algorithms. 
The disadvantage is that the termination condition has to be specified. E.g. BIRCH 

 
 

Clustering Algorithms 

Partitioning Hierarchical Density -Based Grid-Based 

Figure 4.4 Clustering Algorithms 
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• Density based algorithms – They are unsupervised clustering algorithms to locate 
clusters by constructing a density function that reflects the spatial distribution of the 
data points. This method can find arbitrary shape clusters and does not make any 
assumptions about the underlying data distribution. This method is computationally 
very expensive and so can be impractical for very large databases. E.g. DBSCAN 
algorithms create a hierarchical decomposition of the database. 

 
• Grid-based algorithms –  Recently a number of algorithms have been presented which 

quantise the space into a finite number of cells and then do all operations on the 
quantised space. The main characteristic of these approaches is their fast processing 
time, which is typically independent of the number of data objects. They depend 
only on the number of cells in each dimension in the quantised space. E.g. 
WaveCluster 

 
For our project, we propose WaveCluster, a grid-based approach for a number of 
reasons. The proposed approach is very efficient, especially for very large databases. The 
computational complexity of generating clusters in our method is O (N). The results are 
not affected by outliers and the method is not sensitive to the order of the number of 
input objects to be processed. WaveCluster is capable of finding arbitrary shape clusters 
with complex structures such as concave or nested clusters at different scales, and does 
not assume any specific shape for the clusters. A-priori knowledge about the exact 
number of clusters is not required in WaveCluster, however, an estimation of expected 
number of clusters helps in choosing the appropriate resolution of clusters. WaveCluster 
is also multi-resolution capable, i.e. the grid size can be adjusted to extract clusters at any 
desired resolution. We discuss this algorithm in detail in the next chapter.  
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C H A P T E R    F I V E 

The WaveCluster Algorithm 

 
The WaveCluster Algorithm is a clustering technique based on the wavelet transform. 
The wavelet transform is a signal processing technique and can also be applied to spatial 
databases such as astronomical catalogues. 
 

 

5.1 Application of DSP to Spatial Databases 
 
The primary reason for application of signal processing techniques to spatial databases is 
that objects from the database can be represented in an n-dimensional feature space. 
Every object is associated by a number of numerical attributes. Thus, with every object 
we can associate a feature vector whose elements consist of these numerical attributes. 
With the help of these feature vectors we can represent each of these objects in a 
multidimensional spatial area called the feature space. Each element of the feature vector 
corresponds to one dimension of the feature space. The distribution of the objects is 
generally not uniform and we can use signal-processing techniques to identify the dense 
clusters and hence identify the overall distribution of the objects. 

 

 

5.2 Motivation for Using Wavelet Tranform 
 
The motivation for using the wavelet transform is based on the following observations: 

• Unsupervised clustering –  The shape of the mother wavelet ensures that in a cluster, the 
points that lie within the cluster are emphasised, while at the same the points that lie 
on the boundaries of the cluster are suppressed. Thus we see that the dense regions 
act as attractors for points that lie within the cluster and inhibitors for points that lie 
just outside. Thus we see that the clusters automatically clear out the region around 
them, making themselves more distinct. 

 

• Effective removal of outliers –  The  use of low-pass filters to carry out the transform 
ensures that outliers are removed once the wavelet transform is applied. 

 

• Multi-resolution property –  As we are using a signal-processing technique, we can use 
the inherently present multi-resolution property to detect the clusters at different 
levels of accuracy. The clusters can be detected at different resolutions from coarse 
to fine. 
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• Cost -efficiency –  The wavelet transform is very fast and it makes our approach very 
cost-effective. Detecting clusters takes only a few seconds, which makes it possible 
to carry out the mining in real time. 

 
 
5.3 The Algorithm 
 
We consider the multidimensional spatial data, i.e. the feature space, to be a 
multidimensional input signal. When there are a large number of objects, we can apply  
signal-processing techniques to detect the clusters. This is done by using techniques such 
as the wavelet transform to convert the input to the frequency domain. The high 
frequency portions of the signal consist of those parts where there is a rapid change in 
the distribution of objects, i.e. the boundaries of the clusters. The low frequency, high-
amplitude portion of the signal consists of the actual clusters themselves. The 
transformation is done by the convolution of the input data with an appropriate kernel 
function. This transformed feature space is free from outliers and the clusters are more 
distinguishable. We then apply a connected -components detection algorithm to identify 
the individual clusters. 
 
Thus, the steps in the algorithm are: 

1. Quantisation 
2. Wavelet transform 
3. Connected -component detection 
4. Extraction of cluster components 

 
We will now elaborate on the algorithm. 
 
5.3.1 Quantisation 
 
The first step in the algorithm is to convert the spatial data into a discrete 
multidimensional inp ut signal.  In our case the spatial data is two-dimensional, i.e. the 
catalogue of stars, where each star is identified uniquely by its RA and DEC. To convert 
the spatial data, we create a bitmap representing the area of the sky, which is of interest. 
Every element of the bitmap will correspond to a cell of finite area. The dimensions of 
this cell are specified by the user and each cell holds the count of the number of stars 
that lie inside the portion of the sky corresponding to the cell. Thus, to create the bitmap, 
we need to know the number of cells into which the entire area is to be divided. 

m = (RAmax – RAmin) / GridsizeX 
 

n = (DECmax – DECmin) / GridsizeY 
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Thus, if the RA dimension is divided into m intervals and the DEC dimension is divided 
into n intervals, the entire feature space will be divided into mn cells. Each star will be 
assigned to a cell, depending upon its position in the sky, i.e. depending upon its RA and 
DEC. 
 
The bitmap can be treated as a matrix, where each element of the matrix is an individual 
cell. Hence, a cell can be reference by its row and column. A cell at position (x, y) will 
hold a star (RA = r, DEC = d) if: 
 

GridsizeX * x  <= r <= GridsizeX * (x + 1) 
 

and 
 

GridsizeY * y <= d <= GridsizeY * (y + 1) 
 

• Algorithm Quantisation 
 
Let RAmin, RAmax, DECmin, DECmax specify the boundaries of the search area 
specified by the user. Let GridsizeX, GridsizeY specify the grid size in the RA and DEC 
direction respectively. Let GridMatrix be output m * n two-dimensional matrix which is 
intialised to all 0’s. 

 
1. Use the R-Tree Index based search procedure FileIndexSearch to find all the stars 

that lie within the specified area and create an output file SearchedFile containing 
the record numbers of all these stars in the main database. 

2. Read a record  number from SearchedFile.  
3. Read the corresponding star record from the main database. 
4. Let RA and DEC be the values of Right Ascension and Declination of the 

corresponding star. 
5. GridX  = (RA – RAmin) / GridsizeX 
6. GridY  = (DEC – DECmin) / GridsizeY 
7. GridMatrix  [GridX][ GridY] = GridMatrix [GridX][ GridY] + 1 

 
The output GridMatrix is stored as a GridFile called QuantisedFile, which is a 
representation of a two-dimensional matrix stored on file. 

Files are stored in memory as one-dimensional flat text files. We would like to store a 
matrix of numbers in memory. Hence we need to develop a method to map the entires 
in the one-dimensional file to the elements of the two-dimensional matrix. We have 
developed the GridFile to enable us to do just this. 
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Let us assume that the dimensions of the matrix are m x n. To translate the two-
dimensional data into a one-dimensional format, we store the rows sequentially on the 
file. Thus, the elements of row 1 are stored, followed by the elements of row 2, and so 
on. Knowing the row and column of an individual element of the matrix, we can 
calculate its offset on the file and access it directly. The formula for calculating the offset 
is given below: 

offset = [(row – 1) * n + (column – 1)] * byte size of each element 
 

1,1 1,2 1,3 

2,1 2,2 2,3 

3,1 3,2 3,3 

 

  

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 

 

 

 0 4 8 12 16 20 24 28 32 36 

Offsets 

Figure 5.1 Organisation of GridFile 
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5.3.2 Wavelet Transform 

 
The wavelet transform is a signal-processing technique that gives the frequency content 
of a signal by filtering. The filtering is done by convolving the input sig nal s with an 
appropriate filter. 
 
Suppose that s is the input signal, f is the filter to be used and l is the length of the filter. 
If s is the output signal, then by convolving s with f, we get: 

We can choose an appropriate filter from a number of options. The popular Cohen-
Daubechies-Feauveau (2,2) biorthogonal wavelet is shown below: 

 
In our project, we preferred to use a hat-shaped filter such as the one shown below: 

Figure 5.2 Cohen -Daubechies-Feauveau (2,2) 

l  

    si = S  fk si + k – l/2 
         k = 1   

Formula 5.1 Wavelet Transform 

Figure 5.3 Hat-Shaped Filter 
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• Algorithm WaveletTransform 
 
Let QuantisedFile be the output m * n GridFile generated by the Quantisation stage. Let 
Coefficient be the array of filter coefficients. Let N be the number of filter coefficients. Let 
A, B, C and D be the filter parameters as shown in figure 5.3. Let Threshold  denote the 
threshold value used to perform the filtering. Let FilteredFile be the m * n GridFile output 
by the WaveletTransform procedure. 
 

1. xinc = 2 * A / (N – 1), x  = -A 
2. for i = 1 to N  

- if (-A <= x < -C) Coefficient  [i] = -D 
- if (-C <= x <= C) Coefficient [i] = B 
- if (C < x <= A) Coefficient [i] = -D 
- x += xinc 

3. for i = 1 to m  
for j = 1 to n 
- temp = 0 
- for k = 1 to N 
§ temp = temp + Coefficient [k] * QuantisedFile [i][j – N / 2 + k] 
§ temp = temp + Coefficient [k] * QuantisedFile [i –  N / 2 + k][j] 
§ temp = temp + Coefficient [k] * QuantisedFile [i –  N / 2 + k][j – N / 2 + k] 
§ temp = temp + Coefficient [k] * QuantisedFile [i + N / 2 - k][j – N / 2 + k] 

- if  (temp >= Threshold) 
FilteredFile [i][j] = 1 

  else 
FilteredFile [i][j] = 0 
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5.3.3 Connected-component Detection 
 
Detection of connected components between pixels in the binary image generated by the 
clustering algorithm is a fundamental step in the segmentation of the image into clusters. 
Each cluster is assigned a unique label to separate it from other clusters. All the pixels 
within a cluster of spatially connected 1’s are assigned the same label. 
 
The basic algorithm performs two passes through the image. In the first pass, the image 
is processed from left to right and top to bottom to generate labels for each pixel and all 
of the equivalent labels are stored in a pair of arrays. In the second pass, each label is 
replaced by the label assigned to its equivalence class. However, for large images, the 
equivalence arrays can become unacceptably large. The algorithm implemented in our 
project uses the divide-and –conquer approach to finding connected regions. 
 
5.3.3.1 Basic Pixel Connectivity 
 
A pixel p at coordinate (x,  y) has four direct neighbours, N 4(p) and four diagonal 
neighbours, ND(p). Eight-neighbours, N 8(p) of a pixel p consist of the union of N4(p) and 
ND(p). To establish connectivity between pixels of 1’s in a binary image, three type of 
connectivity for pixels p and q can be considered: 

1. 4-Connectivity: 
Connected if q is in N4(p) 

2. 8-Connectivity: 
Connected if q is in N8(p) 

3. m-Connectivity: 
Connected if q is in N4(p), o r if q is in ND(p) and N4(p) n  N 4(p) = Ø. 

The labeling algorithm used in our project is based on 8-connectivity. 
 
5.3.3.2 Connected Component Labelling Algorithm 
 

• Step 1: Initial Labelling  
Scan the image pixel by pixel from left to right and top to bottom. Let p denote the 
current pixel in the scanning process and 4-Nbr denote the four neighbouring pixels 
in the W, NW, N and NE direction of p.  
- If p is 0, move to the next scanning position.  
- If p is 1 and all values in 4-Nbr  are 0, assign a new label to p.  
- If only one value in 4-Nbr is not 0, assign its value to p.  
- If two or more values in 4-Nbr are not 0, assign one of the labels to p and mark 

labels in 4-Nbr  as equivalent.   
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• Step 2: Resolve Equivalences 
The equivalent relations are expressed as a binary matrix L. Equivalence relations 
satisfy reflexivity, symmetry and transitivity. To add reflexivity in matrix L, all main 
diagonal elements are set to 1. To obtain transitive closure, the Floyd-Warshall 
algorithm is used. 

for  j = 1 to n  
for i = 1 to n 

if  L [ i, j] = 1 then 
for k  = 1 to n 

L [ i, k] = L [ i, k] OR L [ j, k] 
 
This algorithm can be performed using O(n3) OR operations. After calculating the 
transitive closure, each label value is recalculated to resolve equivalences. The image is 
scanned again and ea ch label is replaced by the label assigned to its equivalence class. 
 
 

 1 2 3 4 5 6   1 2 3 4 5 6 
1  1    1  1 1 1    1 
2 1       2 1 1    1 
3    1    3   1 1 1  
4   1  1   4   1 1 1  
5    1    5   1 1 1  
6 1       6 1 1    1 

      Before              After    
               

Figure 5.4 Resovling Equivalences 
 
 
5.3.3.3 Divide-and-Conquer Approach 
 
We divide the image into N * M small regions. The large equivalence array is the main 
bottleneck in the original algorithm, but N * M small equivalence arrays can be found in 
greatly reduced time. We then connect each region with its neighbour regions to generate 
the actual label within the entire image. We use N * M pointers Label_List  [i] to point to 
arrays that maintain the global labels with respect to the entire image. Label_List  [i] points 
to the array for Region i where each array element is the global label within the entire 
image and the index for each array element is the local label within Region i.  
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Figure 5.5 Image divided into 4 * 3 regions 
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Figure 5.6 Label_List Structure 

Local Label in Region i 
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• Step 1:  
Divide the given image into N * M small regions and set Total_Index  = 0 

 
• Step 2:  

For each region i = 1 to N * M 
- Apply Step 1 of the basic algorithm to the selected region 
- Allocate memory for the array pointed to by Label_List [i] as maximum 

number of labels for Region i 
- Apply Step 2 of basic algorithm to reolve the equivalences for Region i 
- For j = 1 to Maximum number of labels for Region i 

Label_List  [i][j] = Total_Index + Label 
Where Label is the label assigned to the corresponding equivalence class after 
equivalence resolution 

- Total_Index = Total_Index  + maximum {Label} 
- If i > 1 then call Merge (i) 

 
• Step 3:  

For each region i = 1 to N  * M, scan the image in Region i from left to right, top 
to bottom and replace the local label with value k  with Label_List [i][k] 

 
 
The Merge function is used to resolve equivalences between adjoining regions. 

• Merge (i) Function 
• Step 1:  

Select first pixel p in Region i 
If label (p) > 0 then 

For each pixel q in N8(p) that is in another region 
If label (q) > 0 then 

Call Resolve_Equivalence (p, q, i) 
 

 

Region [i – 1] 

Region [i –  N - 1] Region [i – N] 

Region [i ] 

p 

Figure 5.7 Merging Left-Top Corner Pixel 
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• Step 2:  
For each pixel  p in the first column of Region i 

If label (p) > 0 then 
For each pixel q in N8(p) that is in Region i - 1 

If label (q) > 0 then 
Call Resolve_Equivalence (p, q, i) 

 

• Step 3:  
For each pixel  p in the first column of Region i 

If label (p) > 0 then 
For each pixel q in N8(p) that is in Region i - N 

If label (q) > 0 then 
Call Resolve_Equivalence (p, q, i) 

 
The Resolve_Equivalence Function is used to resolve two equivalent labels p and q. 
• Resolve_Equivalence  (p, q, i) Function 

• Step 1:  
- Index1 = Label_List [Region Number of q][ label (q)] 
- Index2 = Label_List [i][ label (p)] 
- If (Index1 <> Index2)  

Perform Step 2 
 

Region [i – 1] 

Region [i –  N - 1] Region [i – N] 

Region [i ] 

p 

Figure 5.8 Merging Leftmost Column Pixels 
 

Region [i – 1] 

Region [i –  N - 1] Region [i – N] 

Region [i ] 

p 

Figure 5.9 Merging Topmost Row Pixels 
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• Step 2:  
- Small_Label = minimum { Index1, Index2} 
- Large_Label = maximum { Index1, Index2} 
- For k  = 1 to i 

For j = 1 to Size of Array for Reg ion k 
If (Label_List [k][j] > Large_Label) then 

Label_List [k][j] = Label_List [k][j] –  1 
Else if (Label_List  [k][j] = Large_Label) then 

Label_List [k][j] = Small_Label 
- Total_Index = Total_Index – 1 

 
 

5.3.4 Extraction of Cluster Components 
 
The output of the Connected -components detection algorithm is a GridFile which 
consists of densely packed groups of numbers. Each group represents a cluster of stars 
and each group has a unique identifier so that we can differentiate between individual 
clusters. As the file represents the area of interest, the file gives us the geometric 
locations of each cluster. Hence, we can map each cluster from the file to an area in the 
sky. The stars that lie within this area are said to form the cluster, i.e. these stars are the 
components of that cluster. 
 
The SearchedFile gives us a list of all stars that lie within the area of interest. Hence, each 
star either is a part of a cluster, or it is an outlier that is to be discarded. The GridFile 
divides the area of interest into identical cells and each cell will have a label which is non-
zero if the area is part of a spatial cluster. To determine the components of every cluster, 
we take each star from SearchedFile and determine the cell within which this star must lie. 
If the label of that cell is zero, the star can be ignored. If it is non-zero, say n, then the 
star is part of cluster n. 
 
Once this process is completed, we have a list of components for every cluster and these 
lists can be saved to a file for later use. The user can select the clusters that he wishes to 
save on the file. The lists corresponding to those clusters are combined and written to a 
single output file for later retreival and analysis. 
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• Algorithm ClusterExtraction 

 
Let ConnectedFile be the output m * n GridFile generated by the Connected Component 
Labelling algorithm. Let N be the total number of clusters which is initalised to 
Total_Index . We use an array of temporary files TempFile of length N to store the 
components of each cluster separately. Let Count  be an array of length N which contains 
the number of stars ineach cluster. Let IsolatedFile be the output file generated by this 
algorithm.  
 
 

1. For every entry in SearchedFile. 
- Retrieve a record number from SearchedFile. 
- Read the corresponding star record from the main database.  
- Let RA and DEC be the values of Right Ascension and Declination of the 

corresponding star. 
- GridX = (RA –  RAmin) / GridsizeX 
- GridY = (DEC –  DECmin) / GridsizeY 
- If ConnectedFile [GridX][GridY] = i, i <> 0 
§ Store the record number of the corresponding star in TempFile [i] 
§ Count  [i] = Count [i] + 1 

2. Store the search area and the grid sizes in IsolatedFile. 
3. Store the number of clusters N in IsolatedFile. 
4. for i = 1 to N  

Store the number of stars in cluster i, that is Count [i] in IsolatedFile .   
5. for i = 1 to N  

Store the record numbers of all stars in cluster i from TempFile [i] in 
IsolatedFile. 
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5.4  Overview of WaveCluster Algoritm 
 
Now that we have seen the details of the WaveCluster algorithm, we can give an 
overview of the entire process with the help of the following illustrations.  
 
1. Consider the area to be mined specified by a particular search window shown in 

figure 5.9. 
 
 

 
2. We divide the area of interest into identical cells. 
 

        
        
        

        

        

        

Figure 5.10 Search Area  

        
        

        
        

        

        

Figure 5.11 Dividing into Cells 
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3. This is followed by the quantisation of the area. 

 
 

 
 

4. The next step is transformation of the area. 
 

 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 
0 0 0 1 1 1 0 0 

1 1 0 1 1 1 0 0 
0 0 0 0 1 0 0 0 

Figure 5.13 Transformation of the Area 

1 0 0 0 1 0 0 0 
0 0 1 0 0 0 1 0 

1 0 0 1 2 1 0 0 
0 0 0 2 4 3 0 1 

3 3 0 1 2 2 0 0 
0 0 0 0 1 0 0 1 

Figure 5.12 Quantisation of the Area 
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5.  Further the connected regions algorithm is applied to get the individual clusters. 
 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 

0 0 0 1 1 1 0 0 
2 2 0 1 1 1 0 0 

0 0 0 0 1 0 0 0 

Figure 5.14 Applying Connected Regions Algorithm 



AstroMiner: Data Mining of Astronomical Databases 

 

41 

C H A P T E R    S I X 

Cluster Analysis 
 
 
In order to confirm that the detected spatial clusters are valid, it is necessary to analyse 
the detected clusters for their properties. Once it has been established that the program 
can detect the existing clusters, we can further extend the application towards finding of 
new clusters. The various techniques for analysis include the following.  
 
 
6.1  The Hertzsprung-Russell (H-R) Diagram  
 
The Hertzsprung-Russell (H-R) Diagram, pioneered independently by Elnar Hertzsprung 
and Henry Norris Russell, plots Luminosity as a function of Temperature for stars. In 
general, it is a graph that is based on the structure shown in figure 6.1 below.  
 
 

    T (K)  
                                     
(Decreasing) 

 
L/L(Sun) 

 
(Increasing) 

1 

Sun 

Cool, Bright  Hot, Bright 

Hot, Dim Cool, Dim  

Figure 6.1 Basic Structure of H-R Diagram 
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6.1.1 Structure of H-R Diagram 
 
In an H-R diagram, each star is represented by a dot. The position of each dot on the 
diagram corresponds to the star's luminosity and its temperature. The vertical positio n 
represents the star's luminosity which could be the luminosity in Watts, but more 
commonly it is in units of the Sun's luminosity. The horizontal position represents the 
star's surface temperature usually labelled by the temperature in Kelvin’s. It is traditional 
to have the highest Temperatures go to the left.  Instead of temperature sometimes the 
star's spectral class (OBAFGKM)9 or B-V colour index can also be used along the 
horizontal axis. 
 
It is readily apparent that the H-R Diagram is not uniformly populated, but that stars 
preferentially fall into certain regions of the diagram. The majority of stars fall along a 
curving diagonal line called the Main Sequence (the point where the stars begin burning 
hydrogen in their centers), but there are other regions where many stars also fall. 
 
 

 

                                                 
9 Refer appendix for details on spectral classes. 

T(K)  
                 
(Decreasing) 

 
 
 
L/L(Sun) 
 
(Increasing) 

Main sequence 

Giants  

White dwarfs 
 

Figure 6.2 H-R Diagram Pattern 
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The most conspicuous region of the H-R diagram is the sequence of stars running from 
extremely bright, hot stars in the upper left-hand corner to faint, cool stars in the lower 
right-hand corner.  This sequence is call ed the main sequence , and it contains most of the 
stars that could be plotted on the diagram.   
 
The second most prominent region in the H-R diagram is the region labeled as red giants.  
They are luminous stars lying above the main sequence in a region that angles up toward 
the upper right-hand corner. On average, they are 100 times more luminous than the 
Sun, and they vary in surface temperature from 3000 to 7000 K. 
 
Stars are called red supergiants if they lie on the cool side of the diagram and blue supergiants 
if they are early-type stars of classes O and B.  The red supergiants and the blue 
supergiants can be hundreds of thousands of times more luminous than our Sun.  
 
The last region of importance contains faint stars lying below the main sequence; these 
are called white dwarfs. White dwarfs are typically a few thousandths of the luminosity of 
the Sun, even though their outer layers are hotter than those of the Sun.  
 
6.1.2 Uses of H-R Diagram 
 
When stars forming any cluster are plotted to obtain HR diagram pertaining to that 
cluster, it reveals number of characteristics of the whole cluster and also physical, 
chemical properties of the constituent stars. 
 

• HR diagram can be used to determine age of the open cluster. Stars in a cluster are 
formed at the same time, in the same molecular cloud. Therefore, stars in a cluster  

- have the same age 
- had the same initial chemical composition, 
- are at roughly the same distance from Earth. 

Thus, when stars form within a cluster, they differ only in their mass. The more 
massive stars evolve more rapidly, so to find the age of a cluster of stars, we need 
to determine the mass of the stars which have just now exhausted the hydrogen in 
their cores and are turning into red giants. 

 
 

• H-R diagram can be used to determine the rough distance to the cluster. By 
identifying the dwarfs from the main sequence and using parallax measure, a rough 
estimate about the clusters distance can be made. 



AstroMiner: Data Mining of Astronomical Databases 

 

44 

Figure 6.4 Program 
Generated H-R Plot 
for Pleiades 

• The H-R Diagram will also help in differentiating between Open Clusters and 
Globular Clusters. Different types of clusters display different main sequence 
patterns. For example the Pleiades which is an open cluster displays a characteristic 
main sequence as shown in the figure 6.3 below:  

 
Thus by identifying the main sequence pattern an estimate about the characteristic of the 
cluster can be made. The H-R plot generated by our program is shown below. By 
comparing, we see that it agrees fairly with the actual H-R plot. 
 
 
 
 
 
 

Figure 6.3 H-R Plot for 
Pleiades 
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6.2  Cluster Properties 
 
The stars that constitute the detected spatial cluster are stored in a file. These stars can be 
compared with the existing catalogues that store information about the stars constituting 
an existing cluster. Some of the important properties that will help us in this analysis and 
verification process are as follows –  

  
• Number of stars in the cluster 
• Mean RA and mean DEC of the stars in the cluster. 
• Average luminosity or temperature of the cluster 
• Mean Parallax of the stars in the cluster. 
• Span of the cluster. 
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C H A P T E R    S E V E N 

Visualisation  
 
 
After mining the search window for clusters, the user has various options of getting a 
visual representation of the cluster on the Visualisation Screen10. This assists the user in 
determining the approximate shape and relative position of the cluster. The clusters are 
displayed using either the Equatorial Co-ordinate System or the Galactic Co-ordinate System. 
Options for Zooming and Panning of the user-defined window are also a part of the 
visualisation 
 
 
7.1  Equatorial Co-ordinate System 
 
The Equatorial System can be envisioned as the extension of our terrestrial latitude and 
longitude projected onto the celestial sphere. The coordinate analogous to latitude is 
called Declination (DEC), and the coordinate analogous to longitude is called Right 
Ascension (RA). 
 
Using the RA and DEC, along the x and y axes respectively, we display all the stars in the 
user specified search window. Initially the search window will cover the entire 
visualisation screen. The user has the option of increasing and decreasing the window 
size relative to the display screen, hence providing the zooming options. Similarly, this 
window can be panned in the four directions using either the shortcuts or options from 
the menu. Further user has the options of displaying stars that do not form part of the 
cluster in a different colour. In case of multiple clusters within a search window, the user 
has the option of viewing each cluster individually. The various output screens for both 
Pleiades and Perseus clusters are shown in the following figures. 
 
 
 
 
 
 
 
 

                                                 
10 Refer to Section 8.2.1 for Visualisation Screen 
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Figure 7.1 Pleiades Cluster With Background Stars 

 
RAmin:  03:30:20:00 
DECmin:       +19:48:59.8 
RAmax: 04:04:40:00 
DECmax:      + 28:25:00.2 
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Figure 7.2 Pleiades Cluster Without Background Stars 

 
RAmin:  03:30:20:00  
DECmin:       +19:48:59.8 
RAmax: 04:04:40:00  
DECmax:      + 28:25:00.2 
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Figure 7.3 Perseus Double Cluster – Cluster No.1 Only 

 
RAmin: 02:14:26:00  
DECmin:       +55:41:54.9 
RAmax: 02:25:32:67  
DECmax:      + 58:33:55.1 
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Figure 7.4 Perseus Double Cluster – Cluster No. 2 Only 

 
RAmin: 02:14:26:00  
DECmin:       +55:41:54.9 
RAmax: 02:25:32:67  
DECmax:      + 58:33:55.1 
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7.2 Galactic Co-ordinate System 
 
When studying objects in the sky it is helpful to use a coordinate system to keep track of 
where things are. The two specific coordinates are galactic longitude (l) and latitude (b). The 
disk of the galactic plane lies at b = 0 all around the sky. The galactic center defines l=0. 
Latitude is measured as the angle from the galactic plane (therefore, straight out of the 
plane is b = 0). Longitude is defined as angle from the Galactic center along a circle of 
constant latitude. 

 
The user gets to view the cluster detected, in galactic system, by projecting it on a 
modified Pseudocylindrical Azimuthal, equal area plane, which is widely known as 
hammer. Figure 7.5 shows the galactic co -ordinate frame. 
 

  

Figure 7.5 Pseudo Cylindrical Hammer 
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Since we are using Right Ascension and Declination of the stars for searching and 
clustering, we can obtain the corresponding galactic co -ordinates as shown.  
 
Given Equatorial co-ordinates d (Declination) and a (Right Ascension), the galactic co -
ordinates (b, l) can be computed using the following formulae –  

• cos (b). cos (l - 330) = cos (d). cos (a – 282.250) 
• cos (b). sin (l - 330) =  sin (d). sin (62.60) + cos (d). sin (a –  282.25 0). cos (62.60)  
• sin (b)  = sin (d). cos (62.60) - cos (d). sin (a –  282.250). sin (62.60)   

 
After conversion to the galactic co -ordinates, the next step is the projection on the 
pseudocylindrical hammer frame. This is done by using the following formulae for 
getting the x and y co -ordinates. 
 
Given the galactic co -ordinates (glat, glong) and radius R , we get the plotting co -ordinates 
as (x,y): 

• x =  R * 2 * v2 * cos (glat ) * sin (glong / 2)  
   v ( 1 + cos (glat) * cos (glong / 2)) 
 

• y =   R *  v2 * sin (glat)_____        
  v ( 1 + cos (glat) * cos (glong  / 2)) 

 
The output screen for the relative position and orientation for the Pleiades cluster is 
shown in figure 7.6. The stars in red are considered to be part of the cluster whereas the 
stars in white are forming the background and within the search window. 
 

     Figure 7.6 Pleiades Cluster- Galactic Plot 
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C H A P T E R    E I G H T 

User Interface 
 

 
The Graphical User Interface (GUI) is the face of the project that is presented to the 
user. Hence, the design of the GUI is an important aspect. We have kept the following 
principles in mind to develop a simple, neat and friendly user interface: 
 

• All the functionality of the application must be provided by the interface. 

• The user must be able to anticipate the behaviour of the various components, from 
their visual properties. 

• Navigation should be simple and straightforward. 

• Application must be made self-evident by the use of comprehensive help manuals 
and tips. 

• Interface must be designed, so that it is transparent. 

• Keyboard support in the form of short cut keys is essential. 

• Providing too many functions at the top level is not a good idea. 

• Avoiding modal behaviours that force the user into performing tasks in a fixed 
sequence. Allow the user to control the interactive flow. 

• Maintenance of consistency between information display and data input. 

• Deactivation of commands that are inappropriate in the context of the current 
actions.  

• Providing visual and audio feedback to the user. 
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8.1  GUI Design Model 

The GUI for the project has been based on the lines of the Model-View -Controller 
(MVC) Architecture. It is an idealized way of modelling a component as three separate 
parts:- 

• The model that stores the data, which defines the component. 

• The view that creates the visual representation of the component from the data in 
the model. 

• The controller that deals with user interaction with the component and modifies the 
model and/or the view in response to a user action as necessary. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Model-View-Controller Architecture 
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8.2  Application Window 
 
The application window as seen from the figure, consists of three parts i.e the menu, 
control panel on the left and the visualisation screen which covers the rest of the screen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
8.2.1 Visualisation Screen  
 

This is a very important part of the project interface and is used for outputting to the 
user the various plots as requested. Depending upon the option selected the visualisation 
screen will be dynamically updated to display the various plots. 

Menu 

Visualisation 
Screen 

Control Panel 

Figure 8.2 Graphical User Interface 
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8.2.2 Menu 
 
The interactive menu and the control panel provide all the functionality, supported by 
the software. The menu options are listed below: 
 

1. File  
• New:  

This option is used when the user wants to mine area of the sky by 
specifying a search window. 

 
• Load Mined Data:  

The user can load data of a previously saved cluster and directly use the 
visual tools without having to mine the sky for the search window again.  

  
• Browse Clustered Data:  

This allows the user to specify search windows of known astronomical star 
clusters. 

 
• Save As:  

This option allows the user to save the cluster data in a file with an 
extension of .clu. 

 
• Exit:  

This option allows the user to close the application. 
 

2. Display 
Once the mining has been done, or after loading of the cluster data, the 
visualisation tools are activated.  

• Window Plot:  

This option allows the user to plot the entire window with or without 
background stars. 
 

• Cluster Plot:  

This option allows plotting of clusters detected individually with or without 
the background stars. 

  
• Galactic Plot:  

This option allows the user to plot the position of cluster with respect to the 
galactic world frame. 
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• HR Plot:  
This option allows the user to plot the HR plot of the clusters detected. 

 

• View Statistics:  
This option allows the user to see some of the statistical properties for the 
cluster detected. 

 

• Clear Screen:  
This option allows the user to blank out the screen. 

 
3. View 

Manipulation of the plot, seen on the visualisation screen is done with the 
zooming and panning tools.  

• Zoom-In:  
          This option allows the user to zoom in to the window specified. 
 

• Zoom-Out:  

 This option allows the user to zoom out of the window specified. 
 

• Pan Left:  
 This option allows the user to move the specified window left. 
 

• Pan Right:  

 This option allows the user to move the specified window right. 
 

• Pan Up:  
 This option allows the user to move the specified window up. 
 

• Pan Down:  

This option allows the user to move the specified window down. 
 

4. Help 
• Contents:  

A comprehensive well-documented help file is provided. 
 

• Version:  
 This option provides details of the application version 
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• Credits:  
This option pro vides the user with information related to the developers of        
the project. 

 
8.2.3 Control Panel 
The control panel on the left consists of the following sub-panels: - 

 

1. Input Panel 
This part of the control panel allows the user to enter the search window in terms 
of the following parameters: 

• RA Min    (HH:MM:SS.SS) 
• RA Max    (HH:MM:SS.SS) 
• Dec Min   ((+/-)DD:MM:SS.S) 
• Dec Max   ((+/-)DD:MM:SS.S) 

 
Further for the mining, grid cell sizes along the horizontal and vertical directions 
need to be specified for the quantisation. 
 

2. Tool Panel 

The tool panel consists of buttons dealing with the various visualisation plots as 
discussed in the menu options. 

 
3. Options Panel 

The options panel consists of two check boxes: 
• Background Stars: 

When checked the plotting is done with the background stars, otherwise 
only the stars that form a part of the cluster are used for plotting. 

• Save Cluster: 
When checked the current cluster will be marked for saving into a cluster 
data file. 
 

4. Zoom Panel 
This panel provides the same zooming options as discussed above. 

 
5. Navigation Panel 

This panel provides the panning options as discussed above. 
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C H A P T E R    N I N E 

Future Areas  
 
 
Our implementation of the WaveCluster algorithm has the following salient features: 

• Due to our sp atial indexing system, we can mine arbitrarily large astronomical 
catalogues and visualise the results without any drop in performance. 

• Due to the efficiency of the algorithm, the entire mining process can be completed 
in less than a few seconds. Hence, we can carry out the mining in real time. 

• The main-memory requirements of our implementation are very minimal. 
 
Our project could be furthered in scope in the following areas: 
 
 
9.1  Using Larger Catalogues 
 
Our implementation is able to successfully detect known clusters such as Perseus and 
Pleiades. However the true potential and utilisation of the program will be realised only 
when it is used to discover unknown clusters. As the Hipparcos and Tycho catalogues 
represent only a fraction of stars in the sky, the clusters that can be detected are limited. 
Moreover, these catalogues have been studied thoroughly and hence the chance of 
detecting previously undiscovered clusters is very remote. 
 
To make the detection of previously undiscovered clusters, we need to mine larger 
catalogues such as the Guide Star Catalogue II, which contains about 430 million objects. 
The same indexing technique can be applied to this catalogue as well. The height of the 
tree will be | log10 (430000000) –  1 |, i.e. 8. This gives us a minimum of 8 node 
comparisons and a maximum of 160. Hence we see that there is a negligible increase in 
the overhead while searching. 
 
The time taken by the indexing procedure on the other hand will increase significantly. 
The Hipparcos catalogue took 1 hour to index, while the Tycho catalogue took 4.5 
hours.11 Though the indexing procedure on the Guide Star catalogue will take much 
longer, this is a one-time expenditure of effort. If we still wish to speed up the indexing 
procedure, we could make use of two alternatives: 

                                                 
11 On a P-III 800 MHz machine 
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• We could use threads in Java to isolate the overhead of I/O operations from the 
computational operations 

 
• If we had access to a parallel processing environment, we could modify our 

algorithm for index creation so that entries could be inserted in parallel, with 
different processors handling different sub -trees. 

 
 
9.2  Mining the Image Data 
 
The satellites, that provide information about the celestial bodies in the sky, provide this 
information in the form of image data, on the basis of which various catalogues are then 
constructed. The limitation of using astronomical catalogues for the mining process is 
that we are dependent on the accuracy and thoroughness of the catalogue. We can detect 
a new cluster only if the catalogue has the corresponding entries. However, most 
catalogues list stars only if they have a particular brightness. Hence even if a cluster may 
exist in a particular area of the sky, the catalogue may list only a few bright stars from 
within the cluster. Our algorithm will not be able to detect such clusters, since in fact 
they do not exist within the catalogue. 
 
To overcome this, we could use the WaveCluster algorithm on the raw image data itself. 
As the image would already be available in the form of a bitmap, no conversion to 
feature space will be necessary, i.e. the Quantisation phase is made redundant. We could 
directly apply the Wavelet Transform and then detect the connected regions to identify 
the clusters. 
 
The following points must be kept in mind while mining the raw image data: 

• We need to identify the area of the sky that corresponds to the image being mined. 
As there is no way of identifying the area in terms of RA and DEC directly from the 
image, the user will have to provide these values. 

 
• Clusters will be detected if they exist as densely packed regions in the feature space. 

While using catalogues, we could ensure this by adjusting the grid size. This problem 
is slightly different while using the image data. The image itself represents the 
feature space and if the inter-stellar separation in the image is very large, then there 
will not be any densely packed regions and hence, no clusters will be detected. Here, 
we need to make use of the multi-resolution property of the WaveCluster 
Algorithm, i.e. we need to adjust the resolution at which the mining is being carried 
out to enable accurate detection of clusters. 
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• Once the clusters are detected, we will be able to specify the geometric parameters 
of the cluster, such as location, size and shape. We will not be able to identify the 
individual components of the cluster. Knowing the location and size, we may then 
use a stellar catalogue to extract some entries that form part of the cluster. 

 
 
9.3  Mining on Other Parameters 
 
In our project, we have limited the mining process to the detection of spatial clusters. 
However, we could extend our project by carrying out the indexing on any two arbitrary 
parameters. We could then detect clusters on those parameters, however we would need 
a separate index for any two such pairs of parameters. Each index will take some time to 
create and each will occupy some memory. We could extend our interface to make the 
management of indices easy, by storing the index details and asking the user which index 
to use. The user then has the option of mining the data to  detect spatial clusters, or 
clusters on any other parameters. 
 
 
9.4  Mining in Multiple Dimensions 
 
Our index structure as well as the feature space that we create is two-dimensional. Hence 
we can only detect clusters in two-dimensions, or in other words, we can only identify 
areas. However space and the actual clusters are three-dimensional. To account for this, 
we analyse our clusters using the H-R diagram to see if the cluster is a real cluster or not. 
However, this approach is limited as it depends upon the number of stars that lie within 
the cluster. If this number is small, then we cannot draw reliable inferences from the H-R 
diagram. 
 
We could extend our indexing and mining techniques to multiple dimensions. If we 
wanted to carry out the mining in three dimensions, say RA, DEC and Parallax, we 
would have to index the catalogue on these fields and the mining process would also 
need to be extended to the third dimension. Once we did this, we would be able to 
identify volumes and hence the mining would be more reliable. Similarly, we could mine 
the catalogue on an arbitrary number of dimensions. However, the indexing time would 
increase exponentially, though the search time will not increase significantly. Also, the 
WaveCluster algorithm would take longer to run and there may be a significant delay 
while waiting for the results to be displayed. 
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File Name 
 

  Description 
 
 

Catalogue File This is a flat file containing all the records of the stars. 
(Around 100,000 entries for the Hipparcos catalogue and 
around 1,000,000 entries for the Tycho catalogue) 
 

Index File This file contains the R-Tree index which is used for 
instantaneous access. 
 

Searched File This file contains the catalogue record numbers of all stars that 
lie within the window specified by the user. 
 

Quantised File This file is a Grid File containing the bitmap which represents 
the converted feature space. 
 

Filtered File This file is a Grid File containing the bitmap which represents 
the transformed feature space, i.e. the result of Wavelet 
Transform applied to the Quantised File. 
 

Connected File This file is a Grid File containing the bitmap in which each 
cluster in the area of interest is uniquely labelled. It is the result 
of Connected Component Algorithm applied to the Filtered 
File. 
 

Isolated File This file contains information about the detected clusters. It 
can also be stored on disk for later retrieval and analysis. 
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A P P E N D I X  
 

       Spectral Classes 
 
 
 The various spectral classes are summarised in the table given below: 
 
 

Temperature (Kelvin) Spectral Class Colour of Star 
 
 

35000 O Blue-White 
 

21000 B Blue-White 
 

10000 A White 
 

7000 F Yellow-White 
 

6000 G Yellow 
 

4000 K Orange 
 

3000 M Red 
 

 
 
 

 
 
 
 


