
DATA MANAGEMENT IN ENVIRONMENTAL
MONITORING SENSOR NETWORKS

by
Jayant Gupchup

A dissertation submitted to the Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland
February 2012

c© 2012 Jayant Gupchup
All Rights Reserved

Abstract

Data gathered from multi-month to multi-year battery-powered environmental monitoring

sensor networks present numerous challenges. This thesis explores three problems. First,

design issues related to loading, storing and data integrity are studied in detail. An end-

to-end system addressing these tasks by decoupling deployment-specific and deployment-

independent phases is presented. This solution places a strong emphasis on the ability to

trace the origins of every collected measurement for provenance and scientific reproducibility.

Second, we explore the problem of assigning accurate global timestamps to the measurements

collected using the motes’ local clocks. In deployments lacking a persistent gateway, a data-

driven approach is employed to assign timestamps to within 10 parts per million. Building

on these experiences, we developed a novel low-power approach to accurately timestamp

measurements in the presence of random, frequent mote reboots. The system is tested in

simulation and on a real deployment in a Brazilian rain forest. It is able to achieve an

accuracy in the order of seconds for more than 99% of measurements even when a global

clock source is missing for days to months. Lastly, this thesis explores a generic data-driven

approach to reduce communication costs in order to increase network lifetime. In particular,

spatial correlation among sampling stations is leveraged to adaptively retrieve data from a

small subset of informative sensors rather than all instrumented locations. Soil temperature

data collected every half hour for four months from 50 locations is used to evaluate this

system. The method achieves a factor of two reduction in collected data with a median error

of 0.06◦C and 95th percentile error of 0.325◦C.

This work is part of the Life Under Your Feet project developed at the Hopkins Inter-

Networking Research (HiNRG) and eScience Labs at the Johns Hopkins University. At the

time of writing, the data collected for this project is available at http://www.lifeunderyourfeet.org/

ii

Dr. Andreas Terzis Associate Professor
Advisor Department of Computer Science

The Johns Hopkins University

Dr. Alex Szalay Professor
Primary reader Department of Physics and Astronomy and Computer Science

The Johns Hopkins University

Dr. Carey Priebe Professor
Secondary reader Department of Applied Mathematics and Statistics

The Johns Hopkins University

iii

To my grandmother,

who battled Alzheimer’s for many years and came out on top.

Her serenity and positive attitude will always be a tremendous source of inspiration.

iv

Acknowledgements

First and foremost, I would like pay my gratitude to my academic advisors: Prof. Alex Szalay

and Dr. Andreas Terzis. I appreciate all the opportunities I have got at JHU - none of it would

have been possible without their constant support, guidance and timely (and well-deserved)

kicks in the rear.

It has been an absolute privilege to work with Alex and Andreas. It is not easy to describe

Alex but I read a quote that summed up Alex pretty well. “There are dreamers and there

are doers, and then there a few special individuals that have the rare gift of being both” -

anonymous. His breadth of knowledge and ability to do a good job at whatever he takes up

never ceases to amaze me. Andreas’ ability for long-term vision is unparalleled to anything I

have seen before. He has taught me to question and evaluate the motivation behind taking

up any task and to always keep the end in sight. He has been a great source of support

even when my chips were down. I feel really honored to have worked with these two gifted

individuals and I cherish their advise tremendously.

Working with Dr. Kathy Szlavecz was an enriching experience. Her questions gave Life

Under Your Feet some real sense of direction and purpose. I never thought I would be working

with earthworms or turtles, but learning about these curious creatures made me look really

cool at many graduate parties. On a serious note, I am grateful for having had the opportunity

to interact with her. She provided me with interesting and challenging problems to work

on and it made me sit back and appreciate the difference in perspectives among different

disciplines.

Next, I would like to thank Prof. Carey Priebe and Dr. Randal Burns for all their time and

mentorship. I’ve always enjoyed my open and honest discussions with Carey. He served as

my guide and mentor for my masters degree in Applied Mathematics and Statistics, and he

v

took every opportunity he got to tease me about the misfortunes of the Indian cricket team - I

enjoyed meeting him after India won the 2011 World Cup. Randal has a very unique style of

teaching and conveying ideas. I took his “Transaction Processing System” course in my first

semester here at Hopkins and I absolutely loved it - leaving no doubt in my mind that I had

arrived at the right place.

Working with Razvan Musaloiu-E. and Doug Carlson on the Sundial and Phoenix projects

were the most enjoyable periods during my Ph.D. Razvan’s enthusiasm and purity is truly

refreshing. I was lucky to have worked with him. Not only was he a great partner to work

with, he was also a great mentor and a really good friend. He would start all his emails with

“Hi!” and now I have that habit! Doug, from whom I picked up “howdy”, has tremendous

team spirit. In many ways, he taught me how to work in a team, and how much fun that can

be. I admire his attention to detail and his ability to balance schedules (and find the time to

bake bread!)

If you have gone through the Ph.D. process and broken through to the other side, you

would know that this journey isn’t really possible without the help and support of many

individuals. I’d like to acknowledge these special people and apologize for all the times I have

made them play agony aunt.

• My parents (Ajit and Sandhya Gupchup), for being a great support system

• All the members of Life Under Your Feet, HiNRG and IDIES

• Abhishek Rege, Prashant Mali, Dheeraj Singaraju, Kiran Vanaja, Vivek Thampy, Rishab

Shyam, Tushar Rane, Nupura Bhise, Amritha Ramakrishnan and Radha Mukherjee for

ensuring there is never a dull moment whilst I’m outside lab and for engaging me in

many pointless discussions at One World cafe.

• Farzeena Lakdawala, Ashwini Doshi, Huzefa Rangwala and Anshuman Shankar for

vi

being a friend whenever I needed one.

• Cathy Thornton, for always reminding me of the graduation administrative procedures

and helping me negotiate them. Cathy, what would I have done without you.

vii

Contents

Abstract ii

List of Figures xii

List of Tables xvi

1 Introduction 1

2 Environmental Monitoring 5

2.1 A Macroscope . 6

2.2 System Requirements . 7

2.3 Contributions . 9

3 System Design 11

3.1 Deployments . 12

3.1.1 Pilot Deployments . 13

3.1.2 Two Phase Architecture Deployments . 17

3.1.3 Campaign Deployments . 19

3.2 Two Phase Loading Architecture . 21

3.3 System Components . 23

3.3.1 Upload Application . 24

viii

Contents Contents

3.3.2 Stage Database . 26

3.3.3 Science Database . 29

3.3.4 Metadata Framework . 32

3.4 Health Monitoring . 38

3.4.1 Monitoring goals . 39

3.4.2 Overall Methodology . 40

3.4.3 Examples of Monitoring Reports . 43

3.4.4 Case Study - Cub Hill Mote Contacts . 45

3.5 Grazor: Data Access . 47

3.5.1 Overall Design . 48

3.5.2 Data Display and Interactivity . 50

3.6 System Shortcomings . 51

3.6.1 Metadata Inflexibility . 52

3.6.2 Upload Application Maintenance . 54

3.6.3 Dealing with Sensor Faults . 55

3.7 Discussion . 56

3.7.1 Streamlining the Two-phase Architecture 56

4 Time Reconstruction I - Sundial 60

4.1 Introduction . 60

4.2 Problem Description . 62

4.2.1 Recovering Global Timestamps . 62

4.2.2 Problems in Timestamp Reconstruction 63

4.2.3 A Test Case . 64

4.3 Solution . 66

ix

Contents Contents

4.3.1 Robust Global Timestamp Reconstruction (RGTR) 66

4.3.2 Sundial . 67

4.4 Evaluation . 72

4.4.1 Ground Truth . 73

4.4.2 Reconstructing Global Timestamps using Sundial 74

4.4.3 Impact of Segment Length . 76

4.4.4 Day Correction . 77

4.5 Related Work . 78

4.6 Conclusion . 79

5 Time Reconstruction II - Phoenix 81

5.1 Introduction . 82

5.2 Motivation . 83

5.2.1 Postmortem Timestamp Reconstruction 83

5.2.2 Case Studies . 84

5.2.3 Impact . 86

5.3 Solution . 88

5.3.1 In-Network Anchor Collection . 88

5.3.2 Offline Timestamp Reconstruction . 89

5.4 Evaluation . 91

5.4.1 Simulator . 91

5.4.2 Evaluation metrics . 94

5.4.3 Simulation Experiments . 94

5.4.4 Deployment - I . 97

5.4.5 Deployment - II . 99

x

Contents Contents

5.5 Related Work . 102

5.6 Conclusions . 103

6 Exploiting Spatiotemporal Correlations 105

6.1 Features of LUYF Data . 106

6.1.1 Applications of Spatiotemporal Correlations 110

6.2 Cub Hill Data Case Study . 111

6.2.1 Data Preprocessing Challenges . 111

6.3 SMADS . 114

6.3.1 Cluster Identification . 114

6.3.2 Label Data Per Cluster . 116

6.3.3 Training Phase . 116

6.3.4 Evaluation and Discussion . 121

6.4 Adaptive Data Collection . 122

6.4.1 Introduction and Motivation . 123

6.4.2 Literature Survey . 127

6.4.3 Finding Informative Locations . 129

6.4.4 Data Reconstruction Methodologies . 130

6.4.5 Overall System Design . 134

6.5 Adaptive Data Collection Evaluation . 136

6.5.1 Evaluation Metrics . 137

6.5.2 Adaptive Data Collection Strategies . 141

6.5.3 Energy Savings . 145

7 Conclusion 147

xi

Contents Contents

A Database Schemas 160

Vita 163

xii

List of Figures

1.1 The amount of data collected by the Life Under Your Feet networks. 2

3.1 The overall architecture of the LUYF data processing pipeline. 21
3.2 Various steps involved in transferring data from the basestation to the stage

database via the web server. 24
3.3 Various processing steps involved in the stage database 26
3.4 Various processing steps involved in the Science database 29
3.5 Relationship between the metadata entities. 34
3.6 Distribution of node lifetimes for the Cub hill and SERC deployments. 39
3.7 Distribution of mote failure . 40
3.8 Table shows the last known gateway contact for motes in the Cub Hill deploy-

ment. This is a screenshot (clipped) from the actual table output of KoalaReports 42
3.9 Table shows the KoalaReports output that monitors the number of reboots for

each mote. Note that this screenshot is clipped and it’s purpose is mere illus-
tration of the report. 43

3.10 Examples of mote failures caused by battery levels and high moisture. 44
3.11 The number of motes that were in contact with the gateway during each day

of the Cub Hill deployment. The circles at the bottom of the figure represent
network expansions while diamonds represent mote replacements. Event C1
represents the watchdog fix and Event C2 corresponds to the transition from 6
hr to 12 hr downloads. Finally, event E1 corresponds to the basestation’s failure
and E2 and E3 are the two snow storms. 45

3.12 Grazor User Interface . 48
3.13 Output of Grazor after user makes selections . 49

4.1 An illustration of mote reboots, indicated by clock resets. Arrows indicate the
segments for which anchor points are collected. 61

4.2 Time reconstruction error due to α estimation errors as a function of the de-
ployment lifetime. 63

4.3 Ambient temperature data from two motes from the L deployment. The correla-
tion of temperature readings in the left panel indicates consistent timestamps
at the segment’s start. After two months, the mote’s reading become inconsis-
tent due to inaccurate α estimates. 64

xiii

List of Figures List of Figures

4.4 The solar (model) length of day (LOD) and noon pattern for a period of two
years for the latitude of our deployments. 67

4.5 The light time series (raw and smoothed) and its first derivative. The inflection
points represent sunrise and sunset. 67

4.6 The length of day pattern for two long segments belonging to different nodes.
Day 0 represents the start-time for each of the segments. 68

4.7 An illustration of the computed LOD and noon values for the lag with maximum
correlation with the solar model. 69

4.8 The steps involved in reconstructing global timestamps using Sundial. 71
4.9 Node identifiers, segments and length of each segment (in days) for the two

deployments used in the evaluation. 72
4.10 Error in days for different motes from the L and J deployments. 73
4.11 Root mean square error in minutes (RMSEmin). 73
4.12 Relation between ρmax and error in days. 74
4.13 α estimates from Sundial and estimation errors in ppm. 74
4.14 Error in days as a function of segment size. 77
4.15 Error in minutes (RMSEmin) as a function of segment size. 77
4.16 An illustration of the cosine similarity (θSM−PPT) values for seven different day

lags between moisture and rainfall vectors. θSM−PPT peaks at the correct lag
of five days, providing the correct day adjustment. 78

5.1 The 53-mote “Cub Hill” topology, located in an urban forest northeast of Balti-
more, Maryland. 84

5.2 An example of a mote rebooting due to low battery voltage (no watchdog timer
in use). The sharp downward spikes correspond to gateway downloads (every
six hours). Gaps in the series are periods where the mote was completely inop-
erative. 85

5.3 The distribution of the segment lengths before and after adding the watchdog
timer to the mote software. 86

5.4 Impact of time reconstruction methodology using the RGTR algorithm. 87
5.5 Evaluation of Phoenix in simulation. In (c), faults were injected to GPS anchors

after day 237. Figure shows the α and χ values for the GPS mote for the entire
period. 93

5.6 Effect of NUMSEG on different eviction policies. 96
5.7 The stability of the α estimates using Phoenix and the data loss using RGTR in

comparison to Phoenix. 98
5.8 Data loss due to timestamping for the motes in the Brazil deployment 100
5.9 Residuals of fits with global time references for the VM clock and the GPS. . . 101

6.1 The average soil temperature and soil moisture at the Cub Hill deployment for
the period between July 2008 to September 2011. The figure also shows the
detail for the month of August in 2009. 106

xiv

List of Figures List of Figures

6.2 The sampling locations for the Cub Hill deployment. TelosB nodes are placed
at each location and data related to soil conditions (temperature, humidity) are
collected every 10 minutes from each location. Note that this is an aerial view
of the deployment site captured during the winter (leaf cover is absent). 107

6.3 Compare and contrast soil temperature data collected from sensors located in
the forest (F) and in grass (G). Note: This data is from 2009. The year label has
been omitted for brevity. 108

6.4 An illustration of faults in the soil temperature data. Data from location 269
is faulty and sensor at location 260 measures faulty readings after a big rain
event on 05-26. 108

6.5 The correlation matrix for the soil temperature data from Cub Hill for a one
week (2009-5-28 and 2009-06-05) period in the summer. The labels on the axis
represent the locations. Forest locations are represented as “F”, grass as “G”
and locations on the forest-grass boundary as “E”. 110

6.6 Soil temperature dataset collected from Cub Hill. Figure illustrates the preva-
lence of sensor faults and missing observations in the data. Time is represented
by the Y-axis. Each strip along the Y-axis represents data collected from a given
location (labels on top). The colored pixels represent the temperature at a given
time for a given location. The locations and land usage types are labelled on
top. F is forest, E is edge of the forest and G is grass 112

6.7 The dendrogram obtained using the Cub hill dataset. This plot was generated
in MatLab using the weighted distance option and the Euclidean distance met-
ric. Cub hill data obtained between March 2009 and May 2009 is used. 115

6.8 Figure shows the correlation between the data at different locations with the
cluster median. Figures 6.8(a) and 6.8(b) represent locations in forest and grass
respectively that have no outliers. Figures 6.8(c) and 6.8(d) show locations in
forest and grass respectively with a high count of outlying measurements. . . 118

6.9 The top panel shows the original dataset from 2009-5-14 to 2009-8-26. The
middle panel shows the dataset after applying SMADS to it. The red portions
in bottom panel shows the locations corresponding to the top panel that were
detected as faults by SMADS. 120

6.10 Radio usage during each download round. The top panel shows the total down-
load time as a function of the number of nodes during each download round.
The bottom panel shows the median data downloaded in each download round
as a function of the number of nodes. 124

6.11 The top panel shows the reconstruction of data for a snapshot of the Cub Hill
data using 15 randomly selected location. The bottom panel shows the same
for another snapshot - the prediction errors for this snapshot are comparatively
higher. 125

6.12 Various components in the adaptive data framework 134
6.13 Reconstruction errors obtained when selecting locations randomly and using

mutual information. 138

xv

List of Figures List of Figures

6.14 The impact of increasing the test period on reconstruction error. 139
6.15 Prediction error as a function of time and rain events for test period of 5 days . 141
6.16 Daily 95th percentile errors for event driven data downloads. Compare these

errors with 6.15 and notice the low errors after rain events. 144
6.17 Trade-off between reconstruction error and the percentage of data downloaded

by the network. The LEF download strategy is used in this figure. 146

A.1 Schema for the stage database (excludes the metadata tables). 161
A.2 Schema for the science database. 162

xvi

List of Tables

3.1 LUYF deployments. P stands for pilot deployments, T denotes deployments
conforming to a two-phase architecture and C refers to campaign deployments 58

3.2 Function mappings for generating key spaces for the Patch, Location, Node and
Sensor tables. 59

5.1 Phoenix accuracy using the Olin dataset as a function of the number of days
that the basestation was unavailable. 98

6.1 Download fraction and reconstruction errors as a function of the working set. . 138
6.2 Download fraction and reconstruction errors for the LLE data retrieval scheme. 140

xvii

Chapter 1

Introduction

Understanding environmental processes requires collection of data at relevant spatial and

temporal resolutions. To study the environment at a macroscopic level, scientists require ac-

cess to data at high spatial as well as temporal resolutions to characterize and understand the

variability present in their environment of interest. Traditionally, environmental scientists

and ecologists have relied on the use of hand-held devices to collect such data. Measurements

obtained from these devices are often recorded on paper using field books. This methodology

of collecting data results in numerous problems and roadblocks. Technology referred to as

wireless sensor networks (WSNs) has allowed scientists to collect data in real-time at scales

that are relevant. However, numerous challenges related to the management of the data col-

lected by these network need to be addressed. In this thesis, we introduce some of the key

challenges and present an end-to-end solution to address them. We begin by understanding

what WSNs bring to the table and why the study of this research topic is of interest to us.

Hand-held devices require scientists and field technicians to be physically present on-site.

This results in increased labor costs and difficulties in collecting data during unfavorable

weather conditions and increased logistical costs for remote sites. Not only is this method-

ology invasive, but the amount of data gathered from such devices remains limited and it is

unable to provide a view that is necessary for detailed scientific studies. Data collected in this

1

Chapter 1. Introduction

04/09/05 02/05/06 28/12/06 25/08/07 21/04/08 17/12/08 14/08/09 11/04/10 07/12/10 04/08/11
0

20

40

60

80

100

120

140

160

S
am

pl
es

 C
ol

le
ct

ed
 (

M
ill

io
ns

)

Olin−I

Leakin
Jug bay − I

Jug bay − II

Olin − II

Cub hill

SERC

USDA USDA − II

Atacama

Ecuador−II

1/
22

/2
01

2

Figure 1.1: The amount of data collected by the Life Under Your Feet networks.

manner is typically stored in discrete but really separate spreadsheets that are distributed

across the desktops of researchers. This methodology of storing data results in numerous

versioning and provenance challenges.

To overcome the data collection obstacles, a number of environmental researchers began to

employ a technology referred to as wireless sensor networks (WSNs) [38,64,69]. These early

efforts introduced the community to some fundamental system-level challenges related to

packaging, sensor failures, clock skews and network failures. In 2006, I had the opportunity

of being part of Life Under Your Feet (LUYF) [67], a project aimed at studying long-term

spatial and temporal heterogeneity related to the soil using WSNs. LUYF has been active

since October 2005. The SensorScope project [5] and the GreenOrbs project [28] are two other

prominent examples of long-term environmental monitoring deployments that are similar in

scale to LUYF.

As the duration of the deployments and number of deployed sensors began to increase,

2

Chapter 1. Introduction

the amount of data being collected by WSNs started growing at a rate that was previously

considered unimaginable within the environmental sciences community. For example, the

amount of data gathered by the LUYF project since its inception is shown in Figure 1.1.

This data avalanche brings with it numerous challenges with respect to the management,

integrity and quality of the data. The purpose of this work is to address these challenges and

deliver scientifically usable data to the LUYF ecologists. Specifically, this thesis addresses

the following set of challenges:

I. Design of an end-to-end system to address the following challenges related to WSN data:

a. Ingest data gathered by the sensor network in an incremental fashion;

b. Track hardware and assets for provenance and sensor calibrations;

c. Modularize processing steps to track and update data transformations;

d. Interactive user access to the archived data;

e. Ability to fuse with other data sets (E.g. weather stations);

II. Ensure integrity of timestamps assigned to the collected measurements.

III. Leverage spatiotemporal correlations to:

a. Deal with sensor faults and missing observations.

b. Improve the data collection subsystem by exploring the collection-accuracy tradeoff.

The remainder of this thesis is structured as follows. The high level goals of long term

WSNs are outlined in Chapter 2. The end-to-end data management system and design mo-

tivated by the high level goals is described in Chapter 3. Challenges related to assigning

timestamps to the collected measurements are introduced in Chapter 4. The methods pro-

posed by us to tackle these challenges are presented in Chapters 4 and 5. In Chapter 6,

3

Chapter 1. Introduction

we describe how we can exploit the correlations exhibited in the collected measurements to

improve components of our data pipeline. In particular, we use these correlations to detect

sensor faults and study ways to collect data in a more informative fashion. Finally, in Chapter

7, we conclude.

4

Chapter 2

Environmental Monitoring

The overarching idea of using WSNs in the context of environmental monitoring applications

is to present scientists with a tool to collect data. One of the fundamental design principles

of WSN is to utilize limited power and monetary budgets. The goal of the LUYF project is

to apply this technology to study various aspects of soil ecology at scientifically meaningful

scales.

In this chapter, I will use soil ecology as an example to outline some of the challenges

in typical environmental monitoring studies. This will serve as a platform for outlining the

scientific requirements in typical data collection scenarios. Based on these requirements,

we present an overview of the various components and the engineering challenges involved

in order to meet these goals. I would like to point out here that although soil ecology is

used as the application domain, the ideas and concepts remain fairly general and apply to

other environmental monitoring applications too. To give a concrete example, most of the

technology developed for the LUYF project was utilized to collect data for five weeks in 2009

at a Brazilian rainforest for a completely different purpose - to understand the temperature

and moisture conditions at different layers of the forest canopy.

5

Chapter 2. Environmental Monitoring 2.1. A Macroscope

2.1 A Macroscope

Soil is the most complex layer of the terrestrial ecosystem and it has been referred to as

the “final frontier” by the scientific community [42]. Soil is an active reservoir of both car-

bon dioxide (CO2) and water and it plays a pivotal role in the global biogeochemical cycle.

Moreover, the presence of active microorganisms and their activities in the soil impact var-

ious physical and chemical properties resulting in tremendous heterogeneity and variation.

Processes related to the soil vary spatially, temporally and with factors such as soil and veg-

etation type. Thus, in order to get a complete picture, one needs to collect small scale as

well as large scale data continuously with respect to time and space. This new paradigm of

collecting environmental data has been termed as a “macroscope” in WSN literature [69].

The most common method of obtaining data in the past has been to use hand-held devices

by physically going to the field and recording the measurements in a log-book. Data collected

in this manner is extremely sparse and difficult to collect under harsh conditions without

disturbing the environment. The use of manual labor makes this method particularly re-

strictive, costly and ineffective for achieving the necessary spatiotemporal coverage. Another

commonly employed technique is the use of data-loggers. The main disadvantage with com-

mercially available data-loggers is that they do not provide scientists with a “real-time” view

of the environment being sensed. Typically, one needs to physically connect a data-logger to

a reader in a laboratory environment to read the data stored on the logger.

Hopefully, by now I have convinced you that what soil ecologists really require is a way of

sampling the environment at various levels of detail. Furthermore, if this data is available to

them in real-time, it would enable them to coordinate and plan their scientific experiments

in a more productive manner. For example, Lijun Xia, our resident earthworm researcher

is interested in understanding the distribution of earthworms in an urban forest under high

6

Chapter 2. Environmental Monitoring 2.2. System Requirements

moisture conditions. If Lijun has the ability to remotely monitor the moisture conditions at

her site of interest, then she could use this information to plan her experiment appropriately.

2.2 System Requirements

Having introduced some of the basic concepts and methodologies related to environmental

monitoring, let us understand the general requirements for setting up and maintaining a

continuous monitoring network. These requirements are as follows:

1. Data Collection: Sampling locations, modalities (or sensors), sampling frequencies

and deployment durations are selected by environmental scientists. These values are

largely driven by scientific questions of interest. For example, a typical soil ecology

experiment might need two depths of soil temperature and soil moisture that require

to be sampled every 10-15 minutes for a period of a year. The size of the deployment

depends on the required spatial granularity and the available resources. In general,

sampling locations are selected so as to capture the heterogeneity of the underlying soil

and vegetation type.

2. Data Delivery: The data collected from the sampling locations are expected to be

delivered to scientists with a latency in the order of hours to days, but not weeks. The

major engineering challenge lies in the fact that these quality guarantees need to be met

in the presence of hard power constraints and limitations of radio connectivity. The data

needs to be delivered via a multi-hop network using the motes’ on-board radio that has a

limited range (∼ 30 meters). Since there is no access to line power in remote locations,

these motes are powered by small batteries that are expected to provide power for a

period of a year or more. This problem warrants an ultra low-power solution that not

only meets the data-delivery requirements of scientists, but also maximizes the network

7

Chapter 2. Environmental Monitoring 2.2. System Requirements

lifetime simultaneously.

3. Data Management: WSNs generate vast quantities of data that were previously con-

sidered unimaginable in the environmental sciences domain. For example, a 50 node

deployment that collects data every minute from 10 different sensing modalities will

produce over 26 million records over a period of a year. The data collected by these

networks should be easily accessible to scientists at various levels of detail with low

latency. Another major challenge with sensor data is provenance. A number of trans-

formation steps are necessary to convert raw sensor values in to final usable data. For

scientific reasons, intermediate results need to be stored allowing the origins of every

piece of data to be traced. This motivates the need for a unified system that manages

the data gathered by WSNs and also stores various intermediate results. Orthogonally,

data managers also need to track the health and status of various hardware components

and this forms an integral part of the data management system.

4. Data Integrity: Scientific understanding of processes is only as good as the data used

to study them. Therefore, it is imperative to assess the quality of the data gathered,

by monitoring networks before presenting them to the scientists. In WSNs, assigning

accurate timestamps to the collected measurements is a well-known problem due to a

variety of reasons. Environmental studies require measurements to be timestamped

to an accuracy of seconds to milliseconds. Apart from ensuring temporal integrity, the

data gathered by such network contains a lot of missing values and are inherently noisy.

Thus, whenever applicable, it is crucial to apply methods that are robust and can deal

with data of this nature to ensure that the scientists are provided with high quality

data.

8

Chapter 2. Environmental Monitoring 2.3. Contributions

2.3 Contributions

The main goals of this thesis are to study, understand and present solutions to various chal-

lenges related to the management and integrity of the data collected by environmental WSNs.

The thesis titled “Low-power Wireless Sensor Networks for Environmental Monitoring” by

Răzvan Musăloiu-E. addresses the challenges associated with data delivery in long-term

WSNs.

The overall architecture of the data organization and loading system is presented in Chap-

ter 3. This system design was motivated by some of the lessons learned from three early de-

ployments. Based on these experiences, a two-phase data pipeline was engineered that serves

as the backbone for the visualization and the data access layers; the two layers scientists in-

teract with. We present a framework that supports the data and scientific data processing

that goes along with the data. This modularity makes such a design very attractive as one

can easily upgrade, improve existing algorithms and produce new and higher quality versions

of the data.

In Chapter 3, based on our experiences from deployments in 2005 and 2006, we provide

some of the design philosophies behind loading and organizing sensor data. Using some on

these lessons, we outline our current data loading schema and elaborate on how it supports

data and metadata from multiple deployments. we describe how the data pipeline serves as

the backbone for the visualization and data access layers.

Achieving temporal integrity is one of the main tasks of the data processing pipeline.

Broadly speaking this refers to the process of assigning and validating timestamps for the

collected measurements. This thesis proposes Sundial and Phoenix - two novel energy ef-

ficient algorithms that assign global timestamps to the measurements collected using the

motes’ local clocks. The details of Sundial and Phoenix can be found in Chapter 4 and Chap-

9

Chapter 2. Environmental Monitoring 2.3. Contributions

ter 5 respectively. This work is different from most of the other bodies of work in the literature

as it is a post-facto approach rather than the commonly adopted online one. This offline na-

ture of processing greatly simplifies the code that needs to run on the mote. It also leads to

significant energy savings in comparison to online timestamping solutions.

Data gathered from WSN’s exhibit strong spatiotemporal correlations. As such, they

present us with opportunities to take a data-driven approach to improve and optimize as-

pects of the overall system. In Chapter 6, we look at two applications that leverage these cor-

relations. First, a simple and effective methodology to detect sensor faults is applied to soil

temperature data gathered from the Cub hill deployment. Second, we explore a data-driven

system to collect data adaptively in order to strike a balance between reducing power con-

sumption and maintaining data fidelity. This work builds on some recent results obtained in

the area of finding informative locations using mutual information. Specifically, we will dis-

cuss a system that uses these results and explores strategies to reduce communication costs

by selectively transmitting measurements whilst ensuring low prediction errors for measure-

ments that are suppressed. This system is designed to work in conjunction with the existing

LUYF architecture and infrastructure.

10

Chapter 3

System Design

When the first LUYF pilot project was underway, there were few or no guidelines for design-

ing an end-to-end data processing system for environmental WSNs. The reality was that by

the early part of the decade (2000-2010) a lot of the teething problems had not yet been com-

pletely dealt with. Therefore, most of the efforts were focussed on the core issues of hardware

and packaging [31, 38], wireless characterization and packet losses [12, 77], routing proto-

cols [49, 63], and time synchronization [22, 40]. Once solutions for these challenges began to

emerge, the idea of using WSNs for monitoring remote environments started gaining consid-

erable momentum, and by the middle part of the decade, a number of applications and pilot

studies [69] were showcased. In the fall of 2005, the first LUYF pilot project began with a goal

to test the feasibility of using sensor networks for year-long soil ecology studies. Not surpris-

ingly, much of our initial effort also focussed on waterproofing, dealing with sensor failures,

ensuring reliable data downloads, and mundane TinyOS [29] and nesC [26] programming

tasks.

As our systems, processes and requirements matured, the data processing pipeline under-

went several design changes. These modifications have been a result of varying deployment

conditions accompanied by the changing needs of the domain scientists. The pipeline is heav-

ily motivated by field deployments. We will discuss various deployments and the lessons

11

Chapter 3. System Design 3.1. Deployments

learned in Section 3.1. The two phase design is developed based on these experiences, and

is discussed at a high level in Section 3.2. In Section 3.3, we drill down into the details of

this design. Section 3.4 details the methodology used to monitor the health of the system.

The scientists interact with this system by extracting and visualizing the data using Grazor,

a web-based tool described in Section 3.5. An account of the challenges and shortcomings of

this system is provided in Section 3.6, and in Section 3.7, we discuss directions that will help

us to address these shortcomings.

3.1 Deployments

Field deployments bring together professionals from various disciplines and backgrounds.

A complete list of the LUYF deployments is given in Table 3.1. These deployments have

covered a wide spectrum of technical and scientific objectives. The initial deployments served

as pilot studies in an effort to validate our hardware and software platform. After exhaustive

testing of our platform and learning from the pilot studies, we changed our download and

data loading architecture - the two phase architecture. A number of long-term deployments

were supported by this architecture, each having a highly focussed scientific objective. As our

system matured, scientists became interested in taking this technology to collect data at a

high rate (frequency) in remote areas during their field trips (campaigns). These campaigns

shed light on some new requirements and challenges that arise in the absence of a persistent

basestation and connection to the database. These challenges are outlined in detail in Section

3.1.3.

The lessons learnt from each deployment were of great value and each deployment helped

us to improve and prepare for the next one. The impact of these deployment experiences on

the data processing pipeline will be the topic of discussion in the upcoming section.

12

Chapter 3. System Design 3.1. Deployments

3.1.1 Pilot Deployments

At the time of writing of this thesis, there is an abundance of “lessons learned” papers in the

sensor network deployment literature [34, 64, 69, 73]. Barrenetxea et. al cover a wide spec-

trum of issues in their article titled “The Hitchhiker’s Guide To Successful Wireless Sensor

Deployments” [4]. This article, published in 2008, is a good starting point to understand the

common pitfalls in deployments. I would strongly encourage researchers to read this article

before they go ahead with their first deployment. Prior to 2005, research groups primarily

focussed on short-term deployments lasting around a month [31, 38]. There were few or no

accounts of deployments that were operated for multiple months so a lot of the lessons had

to be learnt first-hand.

In September 2005, the first set of MicaZ motes [17] were deployed in an urban forest near

Olin hall of the Johns Hopkins Campus. The second deployment, called Leakin park, was also

deployed in an urban forest co-located with Baltimore Ecosystem Study’s (BES, [62]) sensors.

In both cases, we were interested in understanding the robustness of the MicaZ hardware

and software platform, and the quality of the collected data. Soil temperature, soil moisture

and light information was collected with an interval of one minute at Olin and 20 minutes at

Leakin Park. These deployments lacked a persistent basestation and the motes were acting

as glorified data loggers. Field trips were made (typically, once every 3 months) to download

the data using an ad-hoc basestation. The data was collected during this time using a one-

hop wireless link. This data was preprocessed and then loaded into a database for analysis.

The next two deployments were located at a wetland sanctuary known as Jugbay [6]. The

main difference between this study and the previous ones was the use of TelosB motes [50]

instead of MicaZ.

The data collected by these deployments was loaded in a SQL database. The first design

13

Chapter 3. System Design 3.1. Deployments

of the schema and data pipeline was designed by Jim Gray and Alex Szalay. Their design

was modelled around the skyserver project, and a lot of the stored procedures and utility

functions were re-used [59]. The main contributions of the original schema were as follows:

• Established a framework for representing metadata - data related to the hardware com-

ponents used in the field.

• Incorporated procedures to convert from raw sensor data (ADC) to physical values.

• Formulated a methodology to re-sample the data based on the scientific goals.

For more details of the data processing pipeline used for the pilot deployments, I would

urge the readers to refer to [67].

Lesson Learned

The length of the pilot deployments were longer than most sensor deployments up until that

point. Although a number of lessons were learnt fairly quickly into the deployments, a num-

ber of pitfalls became evident only after a few months had passed. It would be difficult to

provide an exhaustive list of our observations so I will highlight the lessons that helped us in

designing the data processing pipeline. A summary of the lessons learnt are below:

• Inability to monitor the network regularly resulted in loss of data ;

• Lack of a persistent basestation and mote reboots posed problems in assigning accurate

global timestamps ;

• Storing meta information (flash address, reboot counter) for records written to the mote

flash is helpful ;

• The metadata (moteid’s, sensorid’s etc) should be flexible enough to represent hardware

and location reconfigurations ;

14

Chapter 3. System Design 3.1. Deployments

• The system needs to be able to redo all the computations from scratch resulting in a

delete-nothing philosophy.

When the sensing hardware is exposed to harsh conditions, failures are to be expected.

The most common modes have been battery failures and failures due to excessive moisture in

the mote enclosures. Without a persistent basestation, monitoring the network becomes chal-

lenging and we are unable to detect failures remotely. For example, in the Olin deployment

two motes stopped collecting data two months before the scheduled end of the deployment.

Such failures result in invaluable loss of data and often compromise the scientific experiment.

Measurements are timestamped using the motes’ local clocks. The hardware does not

support an on-board, battery-backed real time clock. Thus, whenever the mote resets, it loses

its clock state and the local clock value restarts from zero. These measurements are assigned

a global timestamp outside the network by obtaining a linear mapping between the motes’

local clock to the global time base. This mapping is obtained by collecting reference points,

and each reference point contains two values - the motes local clock value and the basesta-

tion’s global clock value. Linear regression is then used to fit the equation of a straight line to

these points giving us the the mapping (skew and offset) of interest. This methodology works

as long as the mote does not reboot. In reality, they reboot due to a variety of reasons (low

battery levels, high moisture, software bugs etc). When a mote reboots a new mapping needs

to be obtained and if they reboot at a rate higher than the basestation contacts, it becomes

difficult to reconstruct the measurement timeline in terms of the global time. This problem

was observed in the Leakin park deployment. Motes rebooted (often multiple times) in be-

tween the basestation contacts and reconstructing the timestamps became a major challenge.

We overcame this problem using a data-driven methodology known as Sundial (Described

in detail in Chapter 4). Although data-driven approaches provide us with a mechanism to

15

Chapter 3. System Design 3.1. Deployments

achieve temporal integrity, they are a reactive solution and not a proactive solution for ac-

curate timestamping. Going forward, we emphasised on designing solutions that provide us

accurate timestamping in the presence of network partitions and random mote reboots.

Environmental sensors are connected to motes. Data recorded by these sensors is stored

on the motes local flash. At a given time instant, a mote may store data from one or more

sensors in its flash. As mentioned previously, this data is time stamped using the motes’ local

clock. Typically, all sensors are activated at the same time and these measurements result in

a tuple (or a record). These records are temporarily stored on the motes’ flash and we refer

to them as FlashRecords. In the absence of being able to reconstruct timestamps entirely,

storing the reboot counter and address of the record on the flash helps us to establish an

ordering of the records in terms of the logical clock. The key take away message is that even

if records are unable to be assigned accurate timestamps, a sequential view of the data is

valuable so it is important to store meta information about the records.

In typical academic settings (such as the one we are in), the budget for hardware is lim-

ited. Thus, when a mote fails or gets waterlogged, it may be brought back from the field

to be refurbished. The same mote may be used to replace another malfunctioning mote. In

this schema, data streams were identified by their mote ID. This schema would essentially

represent data from two different locations in the same data stream. From a scientist’s per-

spective, data from the same location and sensor type should represent one sensor stream

regardless of the hardware being used. The main lesson learned here was that the metadata

needs to be flexible enough to deal with hardware replacements and representation of data

should be done in a hardware-agnostic manner.

For the vast majority of the times, scientists are interested in data in the final form -

timestamped physical values. Every now and then, the data will demonstrate some inter-

esting features and it is hard to tell if it is an artifact of the data processing or due to real

16

Chapter 3. System Design 3.1. Deployments

phenomenon. For instance, one of the soil temperature sensors at Jug bay demonstrated a

sudden jump in its readings. When we first saw this, we were not sure if it was a real phe-

nomenon or an artifact of the data processing. We traced it back to the ADC values and found

that even the ADC values showed this jump. After doing some tests we realized that this was

due to a sensor fault and not because of faulty data processing. However, we learned that

there are times when we need to check every single step and trace the observation back to

the acquisition step to ensure the validity of the data.

3.1.2 Two Phase Architecture Deployments

Once we began to look through the lessons learnt, it became clear that we needed to redesign

our existing pipeline. We looked at various steps involved in data processing and realized

that the final representation of the data is identical to data gathered by other environmental

monitoring sources (other deployments, weather stations etc.). However, a sensor network

acquires data in a manner that is very different from a weather station. Moreover, the data

acquisition process of one network may vary from that of another. Therefore processing data

from deployments can be thought of as two sets of tasks - one is deployment specific and the

other is deployment independent

The deployment specific component performs tasks that are unique to the deployment.

For example, two deployments may employ different timestamping solutions (possibly due to

varying power budgets). The process of assigning global timestamps will vary for these two

deployments. On the other hand, once the measurements are timestamped and converted to

their physical values, data from both deployments are similar in that they both represent a

collection of time series. The data generated from sensors could be attached to TelosB motes

or to a weather station - their representation does not change (deployment independent).

17

Chapter 3. System Design 3.1. Deployments

Before we proceed, I would like to motivate the deployment specific tasks a little more.

In scientific studies, the ability to trace the origins of the data (provenance) is critical. At

the lowest level, this boils down to storing and representing how the data is acquired and

what sort of preprocessing has been applied before generating the final time series. The

process of acquiring and treating the data highly depends on the hardware configuration. In

sensor networks, there is an entire ecosystem of motes, mote software, sensors, conversion

functions, data acquisition /retrieval protocols. In order for researchers to trace the origins

of every measurement, all the information related to acquisition needs to be preserved and

made available. This approach calls for a deployment specific phase where all the acquisition

and preprocessing steps are logged and can be queried easily.

The two phase data loading architecture is composed of deployment dependent and in-

dependent phases. At this point, I wanted to introduce you to the overall philosophy. The

details and experiences in using this scheme will be presented in Sections 3.2, 3.3, 3.4, 4.2.

The two phase scheme addresses the following needs of the scientists:

1. Ability to download and visualize timestamped sensor data;

2. Achieve a high data yield for all the sampling locations;

3. Preserve information that allows scientists to trace the origins of each measurement;

4. Reprocess data in the event that anomalies are found;

5. Register hardware configuration changes with the system;

6. Monitor the health of the deployments;

The two phase architecture was used in six deployments. Five of these deployments were

located in Baltimore and one was located in the Atacama desert in Chile. For more details on

18

Chapter 3. System Design 3.1. Deployments

the deployments that employed the two phase architecture, refer to Table 3.1. From a hard-

ware perspective, the main difference between these deployments and the pilot deployments

was the presence of a persistent basestation. These sites were also reasonably accessible.

In the event of hardware or system failures, researchers/technicians could get to the sens-

ing sites within an hour’s drive. These characteristics facilitated a number of architectural

changes on the way data was loaded and stored (as we shall see later). The main contribu-

tions of the two phase pipeline were as follows:

• Developed a framework for storing and quering data gathered from environmental sen-

sors;

• Presented a modular and layered view of the various stages in processing sensor data

that allows developers to “plug-in” and “plug-out” appropriate processing methods;

• Enabled users to trace the origins of each measurement;

• Provided data access and visualizations to users in an interactive and adaptive way;

• Improved the overall yields and the ability to monitor network health

3.1.3 Campaign Deployments

The two-phase architecture was designed for collecting data from long term deployments. In

this set up, researchers could visit the sites frequently (once a week) for maintenance work.

This architecture assumed that the basestation would be present at the site at all times.

Once the scientists started using data gathered by sensor networks, they became interested

in carrying the hardware and deploying these networks themselves at their remote study

sites. These sites were completely cut off from line power, and consequently, could not support

19

Chapter 3. System Design 3.1. Deployments

a persistent basestation and an internet connection. There is a growing trend and interest in

the community for such deployments, and they are referred to as campaign deployments.

The interest is to collect data at high sampling frequencies for a period of a few days to

a few weeks. Technicians (or graduate students) could potentially visit the site once a day

and data would be harvested onto a laptop that acted as a basestation. This data would

then be analysed and hardware reconfigurations would take place based on the quality of

the collected data. The goal of these hardware configurations was to utilize the hardware

optimally. For instance, a few locations in the Ecuador-II deployment were recording soil

CO2 in excess of 10K ppm. Thus, the previously installed 10K sensors had to replaced with

20K ones and the 20K sensors were replaced with 10K at locations where the concentration

was lower than 10K. The field visits in such campaigns tend to be highly unpredictable and

it is common to have a series of days without any visits resulting in unattended network

operation.

The lack of a persistent basestation, and consequently, a global clock source, forced us to

redesign our timestamping solution. Phoenix was designed for a worst-case scenario involv-

ing multiple node reboots, temporary network partitions and the absence of a global clock

source for days to months (Chapter 5). This situation was realized in the Brazil campaign.

The plan was to use two GPS motes that would serve as the global clock source. The GPS

devices were held at the airport customs and arrived three weeks after the deployment had

begun - one week before the deployment ended. To make matters worse, one of them did not

work. During this three week period, the motes rebooted a number of times and left and

joined the network on a number of occasions resulting in the worst-case scenario that we

were hoping against. Phoenix was able to timestamp more than 99% of the measurements

collected during the entire deployment.

At first glance, it appeared as though the rest of the pipeline could be reused for these

20

Chapter 3. System Design 3.2. Two Phase Loading Architecture

Figure 3.1: The overall architecture of the LUYF data processing pipeline.

deployments. As the deployments started taking shape, the shortcomings of the existing

architecture started becoming clear to us. These campaigns have provided us with a number

of lessons that has forced us to take notice and redesign for future deployments. The exact

nature of these shortcomings will become clear in Section 4.2. Before we go any further, I

would like to introduce the core design concepts of the two-phase data pipeline and discuss

its various components.

3.2 Two Phase Loading Architecture

The stages involved in the system are shown in Figure 3.1. At one end of the pipeline data is

stored on the motes, and at the other end, it is stored in a database accessible to the scientists.

We describe this data movement at a high level in this section.

Recall that the sensor measurements are stored on the mote’s flash and we refer to them

as FlashRecords. In addition to FlashRecords, a mote stores status records (JournalRecords)

21

Chapter 3. System Design 3.2. Two Phase Loading Architecture

and time states of other motes (AnchorRecords). A basestation requests the mote to transmit

all these outstanding records using an ultra low power mechanism known as Koala [44]. The

basestation identifies where its cache ends and where the mote’s current data ends, and re-

quests the difference. The gateway stores this data locally, and in turn, pushes (using HTTP)

this data to synchronize with a remote server. It is the responsibility of the basestation to

push records in order. For example, if the basestation has records 1,2,5 and 6 available, it will

only push 1 and 2 at this time. When it queries the database for its status next, the response

will be 2. Until the basestation has records 3 and 4 available, it will not push 5 and 6. In

short, the pushes happen in order. An application running on the web server parses these

records and pushes it to a stage database created for that deployment. One stage database

is created for every deployment. I would like to point out that the interaction between the

basestation and the motes is completely autonomous from the interaction of the basestation

and the remote data server.

Our current hardware assumes that many different sensors can be connected to a node.

Sensors are referenced by their sensor ID − a combination of the sensor’s hardware ID and

deployment date. Nodes are referenced by a node ID − a combination of the box ID (or

mote ID) and deployment date. Every unique location, referenced by the location ID, hosts

a node to which a sensor is attached at one of four available channels. The TelosB plat-

form has on-board sensors (temperature, humidity and total solar radiation, photo active

radiation, battery voltage and stabilized voltage) and they occupy sensing channels five to

ten. These internal sensors typically measure the conditions within the water-tight box. The

location-node-sensor arrangement is recorded during the time of deployment by scientists (or

field technicians) on log-books and subsequently entered in to the system using a web-based

portal. This methodology allows us to represent a box servicing different locations at non

overlapping time intervals. In practise, this happens a lot as boxes need to be replaced due

22

Chapter 3. System Design 3.3. System Components

to hardware failures. We refer to this hardware configuration information as metadata and

it is required for converting the sensor’s raw measurements to physical values (in addition to

provenance purposes). The stage database is unable to process information in the absence of

this information. The tasks performed by the stage database are as follows:

• Order records received from the basestation;

• Assign a global time stamp to the sensor measurements by a process of post-mortem

reconstruction of timestamps;

• Parse the records to extract the sensor streams

• Convert the raw sensor measurements to physical values.

The status records collected by the mote are used to generate periodic automated health

reports. These reports are used to replace malfunctioning sensors and troubleshoot network-

ing in order to ensure that our collaborating scientists obtain high data yields.

The stage database next pushes the converted values to a unified database known as the

science database. The science database contains and hosts data from all the LUYF deploy-

ments and it performs the following tasks:

• Re-sample data based on the scientific goals ;

• Store data at various levels of detail (hourly, weekly, daily) ;

• Detect and flag measurements that appear to be faulty ;

• Expose data to the scientists in the form of visualizations and text files.

3.3 System Components

In this section, we will take a look at the four main sub-systems of the data processing

pipeline − the upload application, stage database processing, science database processing

23

Chapter 3. System Design 3.3. System Components

Figure 3.2: Various steps involved in transferring data from the basestation to the stage
database via the web server.

and the metadata framework. The focus will be to provide a high level overview and the de-

sign philosophies of these subsystems and implementation details wherever it is necessary.

3.3.1 Upload Application

The basic mechanism for transferring the outstanding data from the gateway to the stage

database is shown in Figure 3.2. This involves a process of handshaking that is described

as follows. The gateway first establishes the amount of outstanding data by requesting the

upload application (Step 1a in Figure 3.2) to query the stage database (Step 1b in Figure 3.2)

to find out how much data is available at the basestation but not available at the database.

The upload application responds by reporting the last received address on the mote’s flash for

each of the boxes that are known to be out in the field (Step 2 in Figure 3.2). The basestation

24

Chapter 3. System Design 3.3. System Components

compares the flash address values in this table with what is available on it locally. This

lets the gateway know how much data is outstanding for each mote from the database’s

perspective. The gateway then puts together one file containing all the outstanding data

from all the boxes and sends it back to the web server (Step 3 in Figure 3.2). The uploaded

data (D) is signed by hashing the contents with a private key (K) that is shared with the web

server using a SHA-1 hashing function. The hash (F(D+K)) and the contents (D) are sent

together. The web server recomputes the hash (F(D’+K)) over the transferred contents (D’)

and the private key(K). If the two hashes agree, the file is accepted (since D=D’). The upload

application parses the contents to extract the records, stores the file on the remote server

(can be the same as the web server), and pushes the records to the stage database (Step 4 in

Figure 3.2).

The basestation uploads data as a collection of four types of records. The bulkiest of these

are the actual sensor measurements or the FlashRecords. The second type of records contains

information about the status of the mote. These types of records are called JournalRecords

and they are recorded at the basestation whenever it comes in contact with a box (typically

during download rounds). They help us diagnose the health of the motes. Each mote peri-

odically broadcasts its current time state. Other motes listen for these broadcasts and store

this information in the flash along with its own current time state. These time references are

called AnchorRecords and they enable translation of one mote’s time state to that of another.

Each box also collects information (LQI, RSSI) about its links to other boxes and this infor-

mation is harvested by the basestation. Additionally, the basestation also records the path

selected to download data from the boxes. These types are records are called NetworkRecords.

25

Chapter 3. System Design 3.3. System Components

Figure 3.3: Various processing steps involved in the stage database

3.3.2 Stage Database

The high level roles of the stage database were introduced in Section 3.2. Here, I will go

into the details of these roles. The processing steps that take place in the stage database are

shown in Figure 3.3. The complete stage database schema is shown in Figure A.2

Segmentation

A segment is defined as a collection of records (of a given mote) where the local clock is mono-

tonically increasing. We say that a new segment is started when a mote resets (thereby

reseting its logical clock). Upon resetting, the mote increments its reboot counter. A mote’s

reboot counter is also reset when a new version of the code is installed and its flash is wiped

clean. Each installation is associated with an installation time that is stored on the mote.

Each segment is identified by its reboot counter and installation time. Each record is iden-

26

Chapter 3. System Design 3.3. System Components

tified by its local timestamp and the segment number. This process of assigning each record

a segment number is referred to as segmentation. Prior to December 2009, the boxes did

not record the reboot counter and installation time in the flash so these two values had to be

inferred from the data itself. Hence there are two implementations of the code that identifies

and assigns segments to data records. The segmentation process is done to create a logical

construct that facilitates translation from the mote’s logical clock state to the global time

base.

Timestamp Reconstruction

Motes do not have an on-board real-time clock and hence they timestamp the measurements

using their local clock. These measurements need to be translated to the universal time and

this process is what we refer to as postmortem timestamp reconstruction. In order to do this,

the segmented data is combined with the time-state information stored in the Journal table.

This information is essentially a pair of values − first being the mote’s local time, and second,

the basestation’s clock. These points, referred to as anchor points are collected whenever the

basestation comes in contact with the mote. Moreover, the basestation’s clock is synchronized

using Network Time Protocol [43]. Using these anchor points, we can map the mote’s local

time base to the global time scale since they are related linearly. In practice, we need to

identify the segments that each anchor point belongs to and obtain one mapping (or fit) for

each segment using linear regression. This mapping involves estimating the clock skew and

the motes offset from the basestation clock. Using these fit parameters, the records are

translated to their corresponding global timestamps. This original methodology is extended

by Phoenix (Chapter 5) to deal with network partitions and the absence of a basestation for

an extended period of time.

27

Chapter 3. System Design 3.3. System Components

Channel Decoupling

Sensors can be connected to a mote on any of the available sensing channels. To be more spe-

cific, the LUYF motes have 4 sensing channels to which external sensors (soil temperature,

soil moisture and CO2) can be connected in any order. Given this design, it is important to

have a map between the channel numbers and the sensor types connected to those channels.

This map is recorded in the lab prior to the deployment.

The time corrected records contain mote number along with the ADC (raw) values asso-

ciated with the different sensing channels. The channel-map information needs to be refer-

enced to unpack the record and identify the sensor data associated with each sensing chan-

nel. The result of this process is stored in a table (RawData) where each record contains

three columns − sensor ID, timestamp and raw (ADC) value. This decoupling process creates

a dependency on the metadata information (See Section 3.6.1). The pipeline will be unable

to decipher the time corrected ADC streams if the associated metadata information is not

registered with the system.

Physical Value Conversion

Records stored in the RawData table need to be converted to their physical values. For in-

stance, for a soil moisture sensor, a value of 1023 in ADC corresponds to 31% humidity. A

conversion function is defined and stored in the database for each sensor type. The metadata

table is used to extract the sensor type of each sensor and this is used to invoke the appropri-

ate conversion function. The results of applying the conversion function are stored in a table

known as Calibrated data. This data is then pushed to the unified science database.

28

Chapter 3. System Design 3.3. System Components

Figure 3.4: Various processing steps involved in the Science database

3.3.3 Science Database

While the stage database undertakes tasks that are tightly coupled to the architecture of a

sensor network, the science database performs tasks that can be applied to environmental

data streams in general. For example, data collected from weather stations can be stored in

the science database and treated the same way as data collected by the LUYF sensor network.

The various stages in the science database are shown in Figure 3.4.

Time Gridding

When we present data to scientists, it needs to be at scales that are relevant to the question at

hand. Co-located sensor streams often collect data in an asynchronous manner. For example,

a flux tower and a weather station might be co-located but they may be operated by two

different institutions, and hence, their data collection rate and schedules might be completely

different. Scientists, on the other hand, prefer to work with data that is aligned in time across

the sensors. To elaborate on this, let us consider an example in sensor networks where time

gridding comes into the picture. Motes collect data based on their independent schedules.

29

Chapter 3. System Design 3.3. System Components

Let’s assume the schedules of two motes collecting data every 10 minutes are as follows:

N1 : 5m,15m, 25m, ...

N2 : 3m, 13m, 23m, ...

These schedules represent minutes past the hour mark. Let us suppose that scientists

want half hourly values for their purpose. To achieve this, a time grid is constructed that

is aligned to the hour mark and the grid points are half an hour apart. This process of

constructing such a grid is called Time Griding. In our pipeline, a SQL stored procedure

takes the grid interval (step size in terms of time) from the Site table, computes these pre-

defined intervals and then stores them in the TimeGrid table. Data from the CalibratedData

table is interpolated around these pre-determined points. For example, let’s say that we want

to compute the interpolated value around time T and the step size is 2 ∗ δ. We take the data

points that fall in the time interval given by [T − δ, T + δ] and we average these points. This

average represents the interpolated value around time T . The results of these interpolation

for all the sensors are stored in the DataSeries table.

Pyramiding

The amount of data gathered by long-term environmental monitoring projects can be con-

siderably large. For example, LUYF has collected over a 100 million data points over the

course of five years. Based on our experience in working with environmental scientists, it is

important for data to be visualized in an interactive manner for them to get a good feel for

the essential features in the data. The sensor data is typically visualized as a timeseries plot

with time on the X-axis and the observations on the Y-axis. A period of a year corresponds

to a large number of data points for data sampled every half hour, and visualizing all these

points on the same timeseries plot would have a number of disadvantages. The plot becomes

very busy, it consumes a lot of memory and creates a lot of work for the plotting library.

30

Chapter 3. System Design 3.3. System Components

Any operation on this plot requires a lot of computation and reduces the interactivity of the

visualization.

We implement a simple scheme to return data in a layered manner inspired by the way

Google maps renders images. The overall goal of this scheme is to limit the number of data

points being visualized without losing the prominent features of the data. We note that

plotting more points than the number of available pixels makes the plot very busy and serves

no real advantage. In this scheme, the time period of interest is provided as an input. The

number of points (NUM) returned to the user is a variable and the default value is the screen

width (in terms of pixels). This time period is then chopped up into NUM equally spaced

periods to create a custom time grid. We then interpolate around these custom time points

as explained previously. This scheme is particularly useful when the users are exploring the

data. They can change the time period (zoom in/zoom out) and visualize information in an

interactive manner .

In practice, the interpolated data is pre-computed and stored in the DataSeries at various

zoom levels. This concept is inspired the image cutout application in SkyServer [59]. Once

the time period is provided, it fixes the step size. Using this step value, we can retrieve data

at the nearest zoom level and use that for interpolation. This minimizes the amount of data

that needs to be interpolated on the fly and improves the interactivity (speed).

Fault Detection

Environmental sensors are subjected to harsh conditions which often results in short-term

and long-term faults in the data. These faults can significantly affect the quality of data

visualization and analysis. Sensors exhibit a strong degree of correlation in space and time

and these correlations are exploited to determine the integrity of the sensor measurements.

Currently the pipeline makes use of a median filtering method to identify and flag faults. The

31

Chapter 3. System Design 3.3. System Components

method works as follows. At each time step corresponding to the time grid, the median of all

the measurements for a given modality is computed. If the deviation of a measurement from

the median is greater than a pre-determined threshold, the measurement is considered as a

fault and it is flagged. The threshold is varies from one modality to another.

Data Access

Data is made available via a web-based portal called Grazor [32]. Grazor allows data to

be visualized quickly using the pyramiding mechanism. Scientists typically browse around

and are given the ability to bookmark and download data of interest. The format of the

downloaded files is comma separated values.

3.3.4 Metadata Framework

Representation or nomenclature of sensor streams and site information is a key component

for inter-deployment and intra-deployment data integrity. To the best of my knowledge, there

is no commonly accepted data model for representing data collected from sensor networks.

A number of research groups and consortium’s are addressing the general problem of rep-

resenting environmental observations. It is impossible to provide an exhaustive list of these

bodies of work, but here are some of the prominent ones [7,48,57,58]. Although this literature

addresses representation of environmental data, we did not find it suitable to represent meta-

data for our architecture. The main reason for this is their failure to capture and represent

hardware reuse - the ability to track the usage of the hardware (motes, sensors) throughout

the length of the project. We decided to use a very simple data model to represent metadata

customized to our needs. There are three main aspects to this metadata framework:

• Representation of site and hardware information (tables);

32

Chapter 3. System Design 3.3. System Components

• Associations and hierarchy among tables;

• Management of keys for the tables

Metadata Entities

The various metadata entities are:

1. Site: A region of study.

2. Patch: A region within a site where a group of motes can communicate with each other

without requiring additional relays or networking support.

3. Location: A piece of real-estate that is of scientific interest. A location is denoted by the

geographic coordinates where some hardware is placed.

4. Node: A mote class device which facilitates data collection and communication between

other motes and/or the basestation. E.g. TelosB

5. Sensor: A device which collects raw scientific data. E.g. Vaisala GMP 220 [71]

Metadata tables interact among themselves and these relationships are captured in Fig-

ure 3.5.

Metadata Hierarchy

A site is a region of scientific interest. The geographic location and the period of study com-

pletes the definition of a site. The site is specified by latitude (lat), longitude (lon) and the

time zone (in relation to the GMT). Each site is associated with a unique ID known as a site

ID. A site contains one or more regions of interest depending on the nature of the study. For

example, in the 2009-10 SERC study, there were two regions of interest that were located

33

Chapter 3. System Design 3.3. System Components

Figure 3.5: Relationship between the metadata entities.

roughly one kilometer apart. Each region contained a collection of motes that communicated

with each other using their on-board radio. These regions are called patches. Each site may

contain one or more patches, given by a unique identifier known as a patch ID The patches

themselves may be connected using a more powerful radio link or a series of relay nodes.

Each patch is associated with a number of sensing locations. At each sensing location, a

mote is placed. A location is characterized by a piece of real-estate that is being monitored.

In the LUYF deployments, a location is represented by its latitude (lat), longitude (lon) and

elevation (z). As with site ID and patch ID, each location has a unique location ID.

At every location, a mote (also referred to as a box) is placed during the period of study.

34

Chapter 3. System Design 3.3. System Components

At any given time, only one mote is placed at one location. A mote might be replaced due

to hardware failures or other reasons. Thus, during the entire period of study, one or more

mote(s) may be placed at a given location at non-overlapping time periods.

Every mote is addressed using a unique identifier, referred to as a box ID. The active

duration for each box is given as the time between when it was placed in the field (start

date), and when it was recovered/replaced (end date). The combination of boxid, start date

and end date forms a unique identifier and we refer to this as a node (referred by a unique

nodeid). The notion of nodes allows us to effectively reuse or replace a previously used box at

another location at a different time. At the time of deployment, a node entry is “opened” by

recording the boxid and the time when the node was placed in the field. During replacement

or removal, a node entry is “closed” by registering the time when the node was removed from

the field.

Typically, each node is responsible for collecting data of one or more modalities using

sensors. As explained previously (Section 3.2), it may make use of some on-board sensors

and/or some external sensors. Each sensor is denoted by a unique identifier known as a

hardwareid. The hardwareid could be something the manufacturer’s unique serial number.

For sensors made in the LUYF lab, each sensor was assigned a unique hardwareid. A sensor

is attached by noting its start time and detached by marking the end time to only one box

at one point of time. Hardwareid, start time and end time together forms a unique identifier

referred to as sensor ID. The sensor replacement dynamics are similar to the box replacement

dynamics. Specifically, a sensor can be attached to another node at another point of time by

opening and closing the sensor entry - as long as the database reflects that it is detached from

the previous box.

Motes and sensors can have different manufacturers and our schema is flexible enough to

represent the mote and sensor manufacturer’s information. This information is stored in the

35

Chapter 3. System Design 3.3. System Components

node type and sensor type entities (as shown in Figure 3.5)

Key Management

A basic system requirement of the two phase architecture was to identify hardware and pro-

vide the ability to retrace the processing steps back to the data acquisition (ADC value stored

on the mote). In meeting this requirement, it is important to be able to uniquely identify

all the information that allows us to do this. From a data perspective this means that vari-

ous elements need to be uniquely identifiable and consistent among themselves. In database

terminology, each table presented in Figure 3.5 requires to have a primary key - a way to

uniquely identify each record in the table. Furthermore, tables need to maintain referential

integrity. Referential integrity implies that if a column, col, is a primary key for Table A and

it exists in any other table B then all unique values of col in table B must be present in Table

A. To give a very intuitive example, all unique values of locationid (foreign key) in the node

table must be present in the location table where the primary key is locationid. If this fails to

hold, the system violates the referential integrity property. In our system, these constraints

are honored.

The system must deal with the challenge of managing keys in the stage database and the

science database. Care must be taken to ensure that the metadata tables contain unique

values for the primary key columns. One observes that the site table does not contain any

foreign keys. The upshot of this is that the primary keys for the location and hardware

tables can be derived from the site information in a systematic way. Our scheme generates

a key space for each of the dependent tables (Patch, Location, Node, Sensor) as a function

of the siteid. The functions used for determining the key spaces are given in Table 3.2. As

an example, siteid=2 can have 256 locations from the range 256 : 511 (inclusive). The first

locationid in site 2 will be assigned a value of 256. The successive locationid’s will increase

36

Chapter 3. System Design 3.3. System Components

in steps of 1. We note that the number of locations was chosen based on our original system

design and assumptions - we did not expect to have a deployment having more than 256

distinct locations. It is worth mentioning that there is nothing sacred about the number

of keys allowed per site. In future deployments, the number of reserved patches/locations

(or nodes/sensors for that matter) per site can be increased by changing the key mapping

function.

At this point, you might be wondering how the keys and metadata are distributed be-

tween the stage and science databases. I would like to remind you about the roles of the two

databases - the science database is a unified database that contains data streams from all de-

ployments whereas the stage database contains deployment specific data. This implies that

the science database requires a “global view” of the metadata across all deployments, whereas

each stage database needs metadata information specific to its deployment only. Note that

we opted for a unique flat key space (unique locationids across deployments) rather than a

composite key space (site id, non unique locationid across deployments) across all the meta-

data tables in order to make it easier to join tables. Having one single column makes it easier

to join tables and removes any ambiguity about the columns being joined.

From an implementation point of view, the metadata structure is shared between the two

databases. The science database acts as the master database and it is the entry point for

registering any changes in the location or hardware configurations. Each stage database

synchronizes the metadata information with the science database by passing it the site ID

(can be thought of as deployment ID). The science database acts as the master because it

hosts data from all deployments and is therefore entrusted with the job of ensuring that there

are no conflicts (unique keys) in the metadata information across deployments. Note that it

would have been perfectly reasonable to have another database reserved for the metadata.

We consciously avoided this because SQL Server does not support cross database referential

37

Chapter 3. System Design 3.4. Health Monitoring

integrity. We would not have been able to establish integrity for the tables that store sensor

stream data.

Entries can be populated in the metadata tables in a number of ways. An administrator

can do it in a supervised manner by reading data from configuration files and populating

the relevant tables. A web-based system can accept input directly from the user and insert

records in the metadata tables. In our system, both methods have been employed extensively.

Metadata updating needs to be done carefully and it is crucial that these transactions ensure

that the ACID (atomicity, consistency, isolation, durability) properties are maintained. For

example, if node x needs to be replaced by node y, we cannot add the entry for node y unless

we put an end date on node x - both statements must go through before we can commit.

Adding y without closing x leaves the system in an inconsistent state.

Metadata Dependencies

The importance of the metadata being registered with the system was discussed in Section

. The lack of metadata makes the pipeline stall and over the years this has proven to be a

major hurdle. We will see some of the pitfalls of recording metadata in Section 4.2. In Section

3.7 we also discuss the solution that will help streamline this process.

3.4 Health Monitoring

One of the big take aways from the pilot studies was that networks require constant mon-

itoring and attention. The LUYF group decided that a strong emphasis needs to be put

on maintenance in order to minimize data loss. It was interesting to experience that our

relatively simple system produced a myriad of failure modes. Failures included the whole

spectrum ranging from individual motes failing to the collapse of the entire network.

I wanted to motivate this topic a little more and share some aggregates related to mote

38

Chapter 3. System Design 3.4. Health Monitoring

10 20 30 40 50 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Mote lifetime [Days, log scale]

C
D

F

C
S

Figure 3.6: Distribution of node lifetimes for the Cub hill and SERC deployments.

failures and lifetimes. The distribution of the node lifetimes for the Cub hill and SERC

deployments is shown in Figure 3.6. As the deployment gets older, the overall maintenance

goes up as motes begin to fail with a higher frequency. The median node lifetime for the Cub

hill deployment was found to be 154 days and that for SERC was found to be 176 days. One

also observes that there is a lot of variation even though the motes are built exactly the same

way. The causes for failures is shown in Figure 3.7. As expected, the most significant cause

of failure is the consumption of the 19 Ah battery source. However, for a large fraction of the

motes the failure cause remains a mystery. Although it is important to be able to diagnose

the cause of failure, it is even more important to detect the failure and take corrective action

to reduce data loss.

3.4.1 Monitoring goals

The high level goals of monitoring and maintaining the deployments were as follows

39

Chapter 3. System Design 3.4. Health Monitoring

11%

S

9%

M

43%

L

37%

N

Percentage of motes

Failure causes [S = Software, M = Moisture, L=Low Battery, N=No Class]

Figure 3.7: Distribution of mote failure

• Ensure early detection of unhealthy motes;

• Validate mote code based on diagnostic counters;

• Monitor the radio usage of the motes;

• Detect network partitions and communication failures;

• Correlate diagnostic information to understand system behavior

3.4.2 Overall Methodology

In this section, I will describe the mechanism by which the deployments were monitored.

In section 3.2 we introduced the idea of JournalRecords. These records contain informa-

tion about the current status of the mote. Each mote maintains a set of in-memory counters

that provide us with a summary of its operations. Some of the major counters are:

• Operations: current local time, reboot counter, address of last record written, number

of samples taken

• I/O : number of flash reads/writes, flash read/write errors

• Radio : Radio usage, packet retransmissions, beacons sent/received.

40

Chapter 3. System Design 3.4. Health Monitoring

• Sensors : Latest ADC values of all the channels

• Others : Battery voltage, moisture levels

Whenever the basestation is able to contact the mote (typically twice a day), the values

of these counters get recorded at the basestation along with the current Unix timestamp.

This record is what we refer to as JournalRecords - a journal of the motes actions since its

last contact with the basestation. It is worth noting that these records are very small (∼ 128

bytes) and therefore the radio needs to be used for a very short duration. These downloads

are decoupled from the actual data records. This provides us with a mechanism for checking

the vital signs of the network even if we do not download the actual data from the network.

This proved to be useful in the Ecuador deployments where it was important to ensure that

the network and sensors were functioning correctly - even if data downloads were not done

regularly. These records are inserted into a table (Journal table) in the stage database. This

table is queried and reports are created to detect and check for failure conditions. Examples

of some of the prominent queries are listed below

• List the basestation contact times for each mote in the last week

• Determine the number of reboots in the last week for each mote

• Investigate the current battery and moisture levels of the boxes

• For each mote, report the radio-on fraction (duty cycle) for each day in the last week

• Obtain the timestamp of the last observation collected by each mote.

The output of these queries were consumed in two ways. The first method was to display

the summary tables and graphs on a web page. We refer to this method as KoalaReports

as this monitoring code was developed along with the Koala routing protocol. The second

41

Chapter 3. System Design 3.4. Health Monitoring

Figure 3.8: Table shows the last known gateway contact for motes in the Cub Hill deployment.
This is a screenshot (clipped) from the actual table output of KoalaReports

method involved disseminating information using the microblogging site Twitter [70]. The

twitter method was meant for alarms (mote out of contact, battery levels low etc) whereas

KoalaReports was used for a more detailed snapshot of the status of the motes. It took the

deployment name as an argument and produces a set of tables and graphs on-the-fly that

would allow the viewer to see the current state of all the motes. In the upcoming section, I

will show a few examples of the tables and graphs generated by KoalaReports.

42

Chapter 3. System Design 3.4. Health Monitoring

Figure 3.9: Table shows the KoalaReports output that monitors the number of reboots for
each mote. Note that this screenshot is clipped and it’s purpose is mere illustration of the
report.

3.4.3 Examples of Monitoring Reports

An example of the gateway contact table is shown in Figure 3.8. This report is used to

establish the last known time that the gateway was able to establish any contact with the

node. In the example, a few of the nodes have not contacted the gateway for over 8 days. This

could either imply a network partition or a mote failure. A quick look at the battery levels,

moisture conditions and the number of reboots of the mote before the last known contact helps

to disambiguate the two situations. For example, combining the information from Figure 3.8

and Figure 3.9, we are able to see that box 219 has been out of contact for over 2 days and

the number of reboots in the last week has been over 512. On investigating further, we find

that the maximum battery voltage over the week was found to be 2.69V - significantly lower

than the level (¿ 3V) that is required for smooth operation of the mote.

Depletion of the battery voltage is the most dominant reason for node failures (as shown

43

Chapter 3. System Design 3.4. Health Monitoring

06/05/09 07/05/09 08/05/09 09/05/09 10/05/09

3.3
3.35
3.4

3.45
3.5

3.55
3.6

3.65
3.7

3.75

V
ol

ta
ge

Box 201 Box 207 Box 208 Box 209 Box 210

(a) The impact on the battery levels when the radio fails to turn off. The sharp spikes correspond
to the periodic downloads done by the basestation.

28/08/08 30/08/08 01/09/08 03/09/08 05/09/08 07/09/08

10
20
30
40
50
60
70
80
90

100

B
ox

 H
um

id
ity

 (
0−

10
0)

Box 40 Box 100 Box 483 Box 485 Box 497

(b) Rain events causing sudden jumps in the box moisture. Note that some boxes are unaffected by
the rain events while some show a jump in the moisture conditions within the box enclosure.

Figure 3.10: Examples of mote failures caused by battery levels and high moisture.

in Figure 3.7). The voltage levels of five boxes in the cub hill deployment for a period of six

days is shown in Figure 3.10(a). We see some prominent features in this graph. Firstly, there

are sharp downward spikes at regular intervals. These spikes correspond to times when the

basestation is downloading data from these nodes. The radio needs to be kept on for a short

amount of time and this results in a dip in the battery levels. Secondly, there is a significant

drop in the voltage levels between 8/5/2009 and 10/5/2009. This signature is characteristic

and indicative of a failure to turn off the radio. The motes were unable to communicate with

the basestation due to a hardware problem and this resulted in a failure to turn off the radios

44

Chapter 3. System Design 3.4. Health Monitoring

07/29/08 11/04/08 02/10/09 05/19/09 08/25/09 12/01/09 03/09/10

0

10

20

30

40

50

60
A

ct
iv

e
M

ot
es

I II III IV V

E1

C1 C2

E2 E3

Figure 3.11: The number of motes that were in contact with the gateway during each day of
the Cub Hill deployment. The circles at the bottom of the figure represent network expan-
sions while diamonds represent mote replacements. Event C1 represents the watchdog fix
and Event C2 corresponds to the transition from 6 hr to 12 hr downloads. Finally, event E1
corresponds to the basestation’s failure and E2 and E3 are the two snow storms.

of the motes. We were able to detect this early enough to not cause significant damage to the

network.

High levels of moisture in the box enclosure is another common cause of node failures.

Figure 3.10(b) shows box humidity values for a period of a week for 5 boxes in the Cub hill

deployment. The average moisture levels of boxes 100, 483 and 497 jump up after a big rain

event. After 7/9/2008, these boxes are operating with a moisture level that is greater than

80%. Boxes 483 and 497 eventually failed due to excessive moisture.

3.4.4 Case Study - Cub Hill Mote Contacts

The Cub hill deployment has been maintained since July 2008. A number of events have

played a role in how this deployment has shaped up. Some of the major events are shown

in Figure 3.11. This graph is created using the journal records and it shows the number of

motes that are active during each day for a period between July 2008 and March 2010. The

variation in the number of active motes is mainly due to mote failures and due to network

45

Chapter 3. System Design 3.4. Health Monitoring

disconnections. The purpose of this graph is to give a flavor for various factors that may have

a bearing on the overall health of the network.

The network went through three major network expansions. One can observe that as

more nodes joined the network, more nodes also started failing. The cause of these failures

were loosely related to the mote software but we were unable to track down the exact cause

of these failures. We found that the motes were freezing and were unable to come out of this

stuck state. Prior to Feb 2009, motes had to replaced very frequently. At that time, we took a

decision to prevent these nodes from getting stuck by using a watchdog timer. The watchdog

timer is an independent circuit that works as follows. A timer is initialized to zero. The timer

starts counting and when it counts up to the watchdog timeout period, it reboots the system.

To avoid the system from rebooting, an interrupt is set up that fires with a period that is less

than the watchdog timeout period. This interrupt will reset the watchdog timer so that is

starts counting from zero again. In Figure 3.11, the watchdog fix is marked as C1.

After the watchdog timer fix, the number of active motes stayed relatively constant until

we encountered the period marked E1. This period corresponds to the time when the basesta-

tion was experiencing some hardware failures. These failures resulted the nodes to be stuck

in a ’radio-on’ state as the basestation initiates the process of putting the motes to sleep (tur-

ing off their radios). At the point when the basestation problem was fixed, the network had

been active for over 10 months. The overall battery levels were low. In order to reduce the

power consumption, we minimized the download frequency from 6 hours to 12 hours (event

marked as C2). Even though the duty cycle was lowered, the motes had very low battery

levels and many motes started to fail and reboot. The period between E1 and E2 represents

a time when many motes started to fail.

Events E2 and E3 represent two major snow storms. February 5 observed around 30

inches of snow. The snow and ice was deposited on the motes and it took days to melt. During

46

Chapter 3. System Design 3.5. Grazor: Data Access

this period, a number of the motes could were unable to be reached by the basestation.

Visualizing these summaries allowed us to understand various subtle aspects of the sys-

tem. The use of visual aids in monitoring the network proved to be very effective. At the

same time, we started turning our attention to the challenge of effectively understanding the

sensor observations being collected.

3.5 Grazor: Data Access

These LUYF networks were deployed with a goal of understanding the spatial and temporal

heterogeneity related to soil. As such, the data consumers were interested in “mining” for

information rather than using it for validating a highly focussed hypothesis. The typical

usage of the data was to explore various features in the data by looking at it through various

prisms - grouping by location/modalities/time etc. This usage pattern motivated us to develop

Grazor - a tool that allows scientists to visually and intuitively explore the sensor data along

various dimensions.

The idea of developing Grazor started taking shape in the summer of 2009. At that point,

we had overcome the initial teething problems of collecting and storing data. Koala and

two-phase system had become relatively stable. The challenge now was to engage the envi-

ronmental scientists to use the data being collected. A number of meetings were held with

the data consumers to understand their requirements. These requirements governed the

functionality and graphical user interface design.

The main questions that came up during the discussions are listed below:

• Can I visualize data by selecting specific locations, modalities and time intervals?

• Can I look at data trends at various levels of detail - yearly, weekly, daily and hourly?

• Can I download data that has been narrowed down by visual exploration?

47

Chapter 3. System Design 3.5. Grazor: Data Access

Figure 3.12: Grazor User Interface

• Can I save the visual charts and retrieve them a later point in time?

3.5.1 Overall Design

In this section, we will draw attention to the most significant components of the grazor tools.

I will describe at a high level three main pieces - Data selection, Data display experience and

exporting/saving the data.

The data selection and data display components are shown in Figure 3.12 and Figure 3.13

respectively. Lets begin by taking a look at the Data selection module.

Data Selection

A fundamental design consideration was to engage the scientists and make it intuitive for

them to use. Selecting data required a fair amount of thought and tinkering with until we

48

Chapter 3. System Design 3.5. Grazor: Data Access

Figure 3.13: Output of Grazor after user makes selections

settled on a design that satisfied the scientists and was easy enough to show on a webpage.

The selection interface (shown in Figure 3.12) comprises of three parts - selecting locations,

time interval and sensing modalities. The content of these parts is obtained by querying the

database.

The location panel can be further divided into deployments and the locations within the

deployment shown in the left panel of the user interface. The time controller panel at the

bottom of the interface lets users select the time period. The two vertical bars on the time

controllers lets a user expand or contract the time window. Once the locations and the time

period are fixed, the system queries the database to find the active sensors for these locations

and time periods and displays them on top part of the right panel. The sensors are broken

down into external sensors (soil temperature, moisture, CO2 etc) and internal sensors (box

temperature, humidity, light).

49

Chapter 3. System Design 3.5. Grazor: Data Access

The user can visualize the data by clicking on the graph button on the quickstart menu

shown on the right panel. The current selection state can be saved (and deleted later) and

these entries will appear in the data cart - a staging area for saving and retrieving selections

during an active session. The data cart appears on the south east corner of the selection

screen (Figure 3.12). The output of these selections is shown in the graph screen. The se-

lection screen is referred to the map screen. Users can toggle between the two screens by

clicking on the map/graph screen on the north-west corner of the interface.

3.5.2 Data Display and Interactivity

Grazor needs to extract the data corresponding to these selections and the database is con-

tacted for this purpose. A stored procedure, written in transact-SQL, accepts the input pa-

rameters and returns a handle to the output. This output is piped to a plotting library that

was developed and customized by the LUYF developers. Figure 3.13 displays the result of

the selections made in Figure 3.12.

One chart is created for each sensing modality. These set of three charts is collectively

referred to as a chart group. Please note that each chart contains a time controller (blue

panel with start and end time handles at the bottom of each chart) which lets users “zoom-

in” and “zoom-out”. This allows users to change the start and end time of the chart group

and visualize data at arbitrary levels of detail. Furthermore, the time controllers of all the

charts are synchronized, that is, a change in one will also change the resolution of the others.

This feature lets users correlate data from various modalities at the same location. The red

vertical line shown in Figure 3.13 tracks the user’s mouse. It shows the actual physical values

for all the locations and selected modalities on the left panel for the time instance denoted

by the mouse position. Users can add, subtract or minimize charts using the controls on the

50

Chapter 3. System Design 3.6. System Shortcomings

charts. The selection controller on the bottom right allows user to manage multiple groups of

charts. These chart groups have a direct relation with the entries in the data cart.

Each time the user requests data at a different resolution (by zooming in or zooming out)

, Grazor contacts the database and requests for the data using the pyramid scheme (Section

3.3.3).

Data Exporting and Saving

Grazor lets the users export the data as text files. Typically, users do not want to export all

the data but a subset of it. This subset is usually determined after spending some amount

of time visualizing and exploring. This subset can be downloaded as comma separated value

(CSV) files. The user also has the option of saving (bookmarking) the current Grazor state.

This state includes the currently selected locations, , time period and modalities . This mech-

anism allows the user to return at a later point of time (perhaps from another computer),

retrieve this state and continue working. Each user’s bookmarks are stored on the server

in a database. When a user log’s in his/her credentials are verified and all the bookmarks

saved by the user are retrieved. If the user selects a bookmark, Grazor will use the selection

attributes (locations, time period and modalities) to restore the state that existed prior to

saving the bookmark.

In a nutshell, Grazor allows users to visualize, export and save data of interest. It acts as

a web-based visualization layer to the LUYF database.

3.6 System Shortcomings

The two phase data pipeline has been used in seven deployments over the course of four

years. A number of important lessons have been learnt during this time and we are able to

identify shortcomings and opportunities to improve the overall efficacy of the system. These

51

Chapter 3. System Design 3.6. System Shortcomings

shortcomings are listed below:

• Lack of flexibility in registering metadata

• High maintenance efforts for the upload application

• Failure to monitor the health of the deployment effectively

• Inability to deal with sensor faults for different modalities

We will now look at the details of these shortcomings and discuss the experiences we have

had over the course of these four years.

3.6.1 Metadata Inflexibility

The importance of metadata has been highlighted in Sections 2 and 3. The methodology for

recording the metadata information is to map the site-patch-location-node-sensor associa-

tions during the deployment. This information is then entered into the system using the web

portal, Grazor. The existing metadata collection system has posed problems on a number of

different levels. They are listed below:

1. Metadata (node, sensor and location association) are entered manually

2. Inability to update metadata on-site

3. Challenges in collecting geo-location information

4. Data processed with inaccurate metadata is not gracefully offloaded

A typical outdoor deployment is very chaotic and human resource intensive. During this

process, researchers tend to focus most of their effort on the immediate logistical challenges

of setting up the deployment. Although collection of metadata is crucial, its value is only

52

Chapter 3. System Design 3.6. System Shortcomings

realized once the data needs to be looked at. Thus, metadata recording is not prioritized

during the deployment resulting in inconsistencies in the final output.

Our deployment experiences in Ecuador have shown us that researchers may need to

change the channel assignment during the middle of the deployment. Due to the absence of

communication in remote areas, these hardware configuration changes may not be relayed to

the database administrators. This results in the application of an incorrect conversion func-

tion to the raw stream for the channels that have changed. For example, let’s consider that

mote X is connected with a soil moisture sensor on channel 1. Ten days into the deployment

a researcher decides that it is more valuable to have a soil CO2 sensor at that location. Let’s

further suppose that the researcher forgets to update the system regarding this change. As

a result, the system assumes that data on channel 1 of mote X is coming from a soil mois-

ture sensor even though it represents a CO2 stream. On a number of occasions, the data

recorded on log books or loose papers have been misplaced amidst deployment pressures and

this information never got entered into the system.

The system assumes that the location information is collected and entered in the system

so that data can be accessed and visualized using Grazor. This information is difficult to

collect unless there is access to an accurate GPS or surveying equipment (which is expensive

and labor-intensive). The lack of this information makes it difficult to show data on Grazor.

A related issue is that the system assumes that the external sensors connected to a box are

co-located with the box (sensors inherit location information from the box). These sensors

may differ in terms of their depth. At USDA, we encountered situations where the same box

had sensors that were collecting data at the same depth but at two different locations. The

schema has provisions for adding offsets from the box so the issue can be dealt with. However,

logically speaking they are completely different locations so it may be more effective if each

sensor had an associated location.

53

Chapter 3. System Design 3.6. System Shortcomings

Once changes in hardware configuration are made available to the system, the system

should delete data resulting from the incorrect application of the conversion function (data

processed prior to the hardware change notification) and reprocess all the data with the cor-

rect conversion function. At present, the system does not do this. This shortcoming is easy to

fix and can be implemented easily by making sure that upon detecting a hardware change,

the system offloads the previously processed data and reprocesses it with the correct conver-

sion function.

3.6.2 Upload Application Maintenance

The details of the upload application were described in Section 3.3.1. A major shortcoming of

this design is that two separate code bases need to be maintained − one for the basestation

and another one for the upload application. Whenever the record formats change, code needs

to be updated at both places. This design proved costly during the Brazil deployment where

we decided to compress records to save space on the flash. Code was changed on the mote,

the basestation and the upload application. The former two code changes are inevitable but

the last one could be easily avoided if the basestation was set-up to communicate with the

database directly.

The scientific and networking needs for each deployment vary. Thus, the record organiza-

tion and the way information is stored on the flash may change from one deployment to the

next. At present, the upload application is tightly coupled with the way records are stored

on the flash and this structure is shared by all the deployments. Furthermore, there is a

one to one correspondence between the database tables and the types of records. This makes

the system highly inflexible if changes need to be made to accommodate new record types.

For example, some deployments may be used to test out some networking code which might

54

Chapter 3. System Design 3.6. System Shortcomings

require changes to the existing record types. In the current design, the upload application

expects a fixed format for it to insert records in to the database. This tight coupling makes it

difficult to maintain and causes duplication of effort as the basestation code and the upload

application code need to be updated to accommodate the necessary changes.

One way to alleviate some of these challenges and reduce the maintenance efforts is to

keep only one code - at the basestation. This code should be able to talk with the database

server and upload the outstanding data directly by inserting data according to the database

schema.

3.6.3 Dealing with Sensor Faults

Over the years, we have shared data with a number of environmental scientists that have

collaborated with the LUYF group. Their feedback has consistently focussed on the number of

faults in the data. This is not surprising, considering that a high degree of faults in outdoor

deployments have been experienced by a number of research groups. These groups have

reported that data gathered from sensor networks (and particularly soil monitoring sensor

networks) tend to be inherently faulty and the failure modes are highly unpredictable [47,52,

61]. As mentioned previously, we employ a simple median filter method to to detect faults.

This method is used because of its wide applicability - considering that the data collected by

our network comprises of a number of modalities. On the one hand, the scientists are in the

best position to understand and pick out the faulty data points due to their domain expertise,

but on the other hand, many environmental scientists are not comfortable working with large

amounts of data and automate this process effectively. Furthermore, it has been challenging

to develop a general method for such heterogeneous datasets. The modalities tend to respond

differently to the environment, and therefore, picking a set of features that is effective for all

55

Chapter 3. System Design 3.7. Discussion

modalities has been proven to be rather problematic.

3.7 Discussion

After four years of experience with the two-phase architecture and storing sensor data, I

would like to spend some time discussing about the design of future data pipelines.

3.7.1 Streamlining the Two-phase Architecture

The following tasks need to be addressed to improve the overall functioning of the pipeline

1. Eliminate the dependence on field researchers to collect metadata;

2. Establish well defined processes for monitoring system health;

3. Involve domain scientists and gather feedback at the earliest

The primary cause for the inconsistencies in the metadata collection lies with the premise

that this information can be reliably collected during a deployment. This assumption has

proven to be inaccurate time after time. Ideally, a design that auto detects changes in the

hardware as sensors are plugged in and out would cut the human out of the loop making

things more streamlined. These metadata change detections can be stored on the mote as a

new record type. When the basestation downloads such a record, it can interpret the informa-

tion appropriately and directly update the metadata tables that are present in the database.

Although this design addresses challenges (see Section 3.6.1) related to (1) and (2), it does

not address (3). It is not entirely clear on the best way to approach this problem. One pos-

sible solution is to use logical names (e.g. plot 3 at USDA) to represent location information

abstractly. The down side is that it is not feasible to display such locations on a map in a

consistent way.

56

Chapter 3. System Design 3.7. Discussion

The definition of a sensor fault is somewhat arbitrary. What one individual calls a fault

may be the signal for another individual. Furthermore, it is difficult to get a clear consensus

on the spectrum of sensor faults. Some fault types are well-documented in the literature. A

stuck-at-value fault is one such example [61]. The system must be able to deal with such

faults. However, a vast majority of faults are highly subjective and they can be identified

by domain scientists after visual inspection but it is hard to automate this process. This

problem is compounded by the fact that a typical sensor network collects data from multiple

modalities that have varying response characteristics and exhibit huge variability in their

failure modes.

One possible approach to deal with this is to build an engine that begins by asking each

user to identify a few faults per modality. This information could be leveraged to identify

other faults using a choice of machine learning algorithms. This methodology of mark, ex-

tract and confirm would be iterative and would allow scientists to “tune” the results of the

fault detection based on their feedback. Faults identified based on one user’s individual fault

profile would differ from those identified for other since the tagged (faulty vs non-faulty) data

will vary per individual. If a user does not want to spend his time identifying and confirming

faults, all data points tagged as faults by other users will be assumed to be faults and will

not be provided to him during data visualizations or downloads. This philosophy is similar to

one used by GalaxyZoo [51].

57

Chapter 3. System Design 3.7. Discussion

Table 3.1: LUYF deployments. P stands for pilot deployments, T denotes deployments con-
forming to a two-phase architecture and C refers to campaign deployments

Deployment Start End Nodes Purpose
Olin (P) 9/5/05 7/21/06 10 Test MicaZ [17] hardware, software and

experiment with sampling rates

Leakin Park
(P)

3/3/06 11/5/07 6 Test MicaZ hardware and software plat-
form

Jugbay-I (P) 6/22/07 4/26/08 13 Test TelosB platform and study nesting
of box turtles [50]

Jugbay-II (P) 6/11/08 11/8/08 8 Study overwintering of box turtles

Olin-II (T) 7/13/08 9/15/09 18 Test Koala [44] download protocol and
two-phase data loading

CubHill-I (T) 7/29/08 5/12/11 53 Study spatial and temporal heterogene-
ity of soil in urban forests

SERC (T) 3/11/09 7/20/10 37 Study impact of leaf litter and forest
types on soil respiration

USDA (T) 7/23/09 7/20/10 22 Study impact of soil conditions on crop
yields

Atacama (T) 8/18/09 1/16/10 3 Monitor conditions around a telescope at
an high altitude

Brazil (C) 11/17/09 12/17/09 50 Collect atmospheric data to improve
micro-font development models

Ecuador-I (C) 1/12/10 1/31/10 20 Contrast soil respiration of old and
young forests in summer

Ecuador-II (C) 5/22/10 6/7/10 20 Study soil respiration of old and young
forests in winter

CubHill-II (T) 5/12/11 − 77 Study and understand relationship be-
tween soil CO2 and ambient CO2

58

Chapter 3. System Design 3.7. Discussion

Table 3.2: Function mappings for generating key spaces for the Patch, Location, Node and
Sensor tables.

Table key range Example (for siteid=2)
Patch 24 ∗ (siteid− 1) : 24 ∗ (siteid)− 1 Key Range : 16 : 31
Location 28 ∗ (siteid− 1) : 28 ∗ (siteid)− 1 Key Range : 256 : 511
Node 210 ∗ (siteid− 1) : 210 ∗ (siteid)− 1 Key Range : 1024 : 2047
Sensor 216 ∗ (siteid− 1) : 216 ∗ (siteid)− 1 Key Range : 65536 : 131071

59

Chapter 4

Time Reconstruction I - Sundial

Time reconstruction was briefly introduced in the previous chapter. In this Chapter, I will

introduce its fundamentals and describe some of its challenges. Up until the Olin-II deploy-

ment (Table 3.1), the LUYF deployments did not have a persistent basestation. In the ab-

sence of a time synchronization protocol and a persistent basestation, assigning timestamps

to measurements turned out to be a challenge. The problem is fundamentally caused by ran-

dom mote reboots. This chapter describes the discovery of this problem and our data-driven

solution, referred to as Sundial.

4.1 Introduction

A number of environmental monitoring applications have demonstrated the ability to cap-

ture environmental data at scientifically-relevant spatial and temporal scales [67,69]. These

applications do not need online clock synchronization and in the interest of simplicity and ef-

ficiency often do not employ one. Indeed, motes do not keep any global time information, but

instead, use their local clocks to generate local timestamps for their measurements. Then, a

postmortem timestamp reconstruction algorithm retroactively uses (local, global) timestamp

pairs, recorded for each mote throughout the deployment, to reconstruct global timestamps

for all the recorded local timestamps. This scheme relies on the assumptions that a mote’s

60

Chapter 4. Time Reconstruction I - Sundial 4.2. Problem Description

0 5000 10000 15000 20000 25000 30000 35000
0.

0e
+

00
1.

5e
+

07
3.

0e
+

07

Sequence number

Lo
ca

l t
im

es
ta

m
p

Figure 4.1: An illustration of mote reboots, indicated by clock resets. Arrows indicate the
segments for which anchor points are collected.

local clock increases monotonically and the global clock source (e.g., the base-station’s clock)

is completely reliable. However, we have encountered multiple cases in which these assump-

tions are violated. Motes often reboot due to electrical shorts caused by harsh environments

and their clocks restart. Furthermore, basestations’ clocks can be desynchronized due to

human and other errors. Finally the basestation might fail while the network continues to

collect data.

We present Sundial, a robust offline time reconstruction mechanism that operates in the

absence of any global clock source and tolerates random mote clock restarts. Sundial’s main

contribution is a novel approach to reconstruct the global timestamps using only the repeated

occurrences of day, night and noon. We expect Sundial to work alongside existing postmortem

timestamp reconstruction algorithms, in situations where the basestations’ clock becomes in-

accurate, motes disconnect from the network, or the basestation fails entirely. While these

situations are infrequent, we have observed them in practice and therefore warrant a so-

lution. We evaluate Sundial using data from two long-term environmental monitoring de-

ployments. Our results show that Sundial reconstructs timestamps with an accuracy of one

minute for deployments that are well over a year.

61

Chapter 4. Time Reconstruction I - Sundial 4.2. Problem Description

4.2 Problem Description

The problem of reconstructing global timestamps from local timestamps applies to a wide

range of sensor network applications that correlate data from different motes and external

data sources. This problem is related to mote clock synchronization, in which motes’ clocks

are persistently synchronized to a global clock source. However, in this work, we focus on en-

vironmental monitoring applications that do not use online time synchronization, but rather

employ postmortem timestamp reconstruction to recover global timestamps.

4.2.1 Recovering Global Timestamps

As mentioned before, each mote records measurements using its local clock which is not

synchronized to a global time source. During the lifetime of a mote, a basestation equipped

with a global clock collects multiple pairs of (local, global) timestamps. We refer to these

pairs as anchor points1. Furthermore, we refer to the series of local timestamps as LTS and

the series of global timestamps as GTS. The basestation maintains a list of anchor points

for each mote and is responsible for reconstructing the global timestamps using the anchor

points and the local timestamps.

The mapping between local clock and global clock can be described by the linear relation

GTS = α ·LTS + β, where α represents the slope and β represents the intercept (start time).

The basestation computes the correct α and β for each mote using the anchor points. Note

that these α and β values hold, if and only if the mote does not reboot. In the subsections that

follow, we describe the challenges encountered in real deployments where the estimation of

α and β becomes non-trivial.
1We ignore the transmission and propagation delays associated with the anchor point sampling process.

62

Chapter 4. Time Reconstruction I - Sundial 4.2. Problem Description

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 min 1 hour 1 month 1 year

1.44 min

8.75 h

6 ms

0.36 s

8.64 s

52 min

0.6 ms

36 ms

5.25 min

60 us

E
rr

or

1 permil

100 ppm

10 ppm

1 ppm

Figure 4.2: Time reconstruction error due to α estimation errors as a function of the deploy-
ment lifetime.

4.2.2 Problems in Timestamp Reconstruction

The methodology sketched in Section 4.2.1 reconstructs the timestamps for blocks of mea-

surements where the local clock increase monotonically. We refer to such blocks as segments.

Under ideal conditions, a single segment includes all the mote’s measurements. However,

software faults and electrical shorts (caused by moisture in the mote enclosures) are two

common causes for unattended mote reboots. The mote’s local clock resets after a reboot and

when this happens we say that the mote has started a new segment.

When a new segment starts, α and β must be recomputed. This implies that the recon-

struction mechanism described above must obtain at least two anchor points for each seg-

ment. However, as node reboots can happen at arbitrary times, collecting two anchor points

per segment is not always possible. Figure 4.1 shows an example where no anchor points

are taken for the biggest segment, making the reconstruction of timestamps for that segment

problematic. In some cases we found that nodes rebooted repeatedly and did not come back

up immediately. Having a reboot counter helps recover the segment chronology but does not

provide the precise start time of the new segment.

Furthermore, the basestation is responsible for providing the global timestamps used in

63

Chapter 4. Time Reconstruction I - Sundial 4.2. Problem Description

A
D

C
 v

al
ue

s

Apr 2 Apr 3 Apr 4

300

400

500

600

700

800

Jun 16 Jun 17 Jun 18

Node 72
Node 76

Figure 4.3: Ambient temperature data from two motes from the L deployment. The corre-
lation of temperature readings in the left panel indicates consistent timestamps at the seg-
ment’s start. After two months, the mote’s reading become inconsistent due to inaccurate α
estimates.

the anchor points. Our experience shows that assuming the veracity of the basestation clock

can be precarious. Inaccurate basestation clocks can corrupt anchor points and lead to bad

estimates of α and β introducing errors in timestamp reconstruction. Long deployment ex-

acerbate these problems, as Figure 4.2 illustrates: an α error of 100 parts per million (ppm)

can lead to a reconstruction error of 52 minutes over the course of a year.

4.2.3 A Test Case

Our Leakin Park deployment (referred to as “L”) provides an interesting case study of the

problems described above. The L deployment comprised six motes deployed in an urban for-

est to study the spatial and temporal heterogeneity in a typical urban soil ecosystem. The

deployment spanned over a year and a half, providing us with half a million measurements

from five sensing modalities. We downloaded data from the sensor nodes very infrequently

using a laptop PC and collected anchor points only during these downloads. One of the soil

scientists in our group discovered that the ambient temperature values did not correlate

among the different motes. Furthermore, correlating the ambient temperature with an inde-

pendent weather station, we found that the reconstruction of timestamps had a major error

64

Chapter 4. Time Reconstruction I - Sundial 4.2. Problem Description

Algorithm 1 Robust Global Timestamp Reconstruction (RGTR)
constants
Q . Constant used to identify anchor points for the segment
δHIGH , δLOW , δDEC . Constants used in iterative fit

procedure CLOCKFIT(ap)
(r, i)← (0, 0)
q ← HOUGHQUANTIZE(ap)
for each γ in KEYS(q) do
s← SIZE(q{γ})
if s > r then

(r, i)← (s, γ)

return COMPUTEALPHABETA(q{i})

procedure HOUGHQUANTIZE(ap)
q ← {} . Map of empty sets
for each (ltsi, gtsi) in ap do

for each (ltsj , gtsj) in ap and (ltsj , gtsj) 6= (ltsi, gtsi) do
α← (gtsj − gtsi)/(ltsj − ltsi)
if 0.9 ≤ α ≤ 1.1 then . Check if part of the same segment
β ← gtsj − α · ltsj
γ ← ROUND(β/Q)
INSERT(q{γ}, (ltsi, gtsi))
INSERT(q{γ}, (ltsj , gtsj))

return q

procedure COMPUTEALPHABETA(ap)
δ ← δHIGH
bad← {}
while δ > δLOW do

(α, β)← LLSE(ap)
for each (lts, gts) ∈ ap and (lts, gts) /∈ bad do
residual← (α · lts+ β)− gts
if residual ≥ |δ| then

INSERT(bad, (lts, gts))
δ ← δ − δDEC

return (α, β)

in it.

Figure 4.3 shows data from two ambient temperature sensors that were part of the L

deployment. Node 72 and 76 show coherence for the period in April, but data from June

are completely out-of-sync. We traced the problem back to the laptop acting as the global

clock source. We made the mistake of not synchronizing its clock using NTP before going

to the field to download the data. As a result the laptop’s clock was off by 10 hours, giving

rise to large errors in our α and β estimates and thereby introducing large errors in the

reconstructed timestamps. To complicate matters further, we discovered that some of the

motes had rebooted a few times between two consecutive downloads and we did not have any

anchor points for those segments of data.

65

Chapter 4. Time Reconstruction I - Sundial 4.3. Solution

4.3 Solution

The test case above served as the motivation for a novel methodology that robustly recon-

structs global timestamps. The Robust Global Timestamp Reconstruction (RGTR) algorithm,

presented in Section 4.3.1, outlines a procedure to obtain robust estimates of α and β using

anchor points that are potentially unreliable. We address situations in which the basesta-

tion fails to collect any anchor points for a segment through a novel method that uses solar

information alone to generate anchor points. We refer to this mechanism as Sundial.

4.3.1 Robust Global Timestamp Reconstruction (RGTR)

Having a large number of anchor points ensures immunity from inaccurate ones, provided

they are detected. Algorithm 1 describes the Robust Global Timestamp Reconstruction (RGTR)

algorithm that achieves this goal. RGTR takes as input a set of anchor points (ap) for a given

segment and identifies the anchor points that belong to that segment, while censoring the

bad ones. Finally, the algorithm returns the (α, β) values for the segment. RGTR assumes

the availability of two procedures: INSERT and LLSE. The INSERT(x, y) procedure adds a

new element, y, to the set x. The Linear Least Square Estimation [20], LLSE procedure takes

as input a set of anchor points belonging to the same segment and outputs the parameters

(α, β) that minimize the sum of square errors.

RGTR begins by identifying the anchor points for the segment. The procedure HOUGHQUAN-

TIZE implements a well known feature extraction method, known as the Hough Transform [19].

The central idea of this method is that anchor points that belong to the same segment should

fall on a straight line having a slope of ∼ 1.0. Also, if we consider pairs of anchors (two at a

time) and quantize the intercepts, anchors belonging to the same segment should all collapse

to the same quantized value (bin). HOUGHQUANTIZE returns a map, q, which stores the an-

66

Chapter 4. Time Reconstruction I - Sundial 4.3. Solution

H
ou

rs

Length
of day
Solar
noon

Jan 2006 Jul 2006 Jan 2007 Jul 2007 Jan 2008

10

11

12

13

14

15

11:30
11:45
12:00
12:15
12:30

Figure 4.4: The solar (model) length of day
(LOD) and noon pattern for a period of
two years for the latitude of our deploy-
ments.

650000 700000 750000 800000 850000 900000

0
20

0
40

0
60

0
80

0
10

00

Local timestamps

H
ou

rs

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●

●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●●

●

●●●

● Light Smooth Derivative

Figure 4.5: The light time series (raw and
smoothed) and its first derivative. The in-
flection points represent sunrise and sun-
set.

chor points that collapse to the same quantized value. The key (stored in i) that contains the

maximum number of elements contains the anchor points for the segment.

Next, we invoke the procedure COMPUTEALPHABETA to compute robust estimates of α

and β for a given segment. We begin by creating an empty set, bad. The set bad maintains

a list of all anchor points that are detected as being outliers and do not participate in the

parameter estimation. This procedure is iterative and begins by estimating the fit (α, β)

using all the anchor points. Next, we look at the residual of all anchor points with the fit.

Anchor points whose residuals exceed the current threshold, δ, are added to the bad set and

are excluded in the next iteration fit. Initially, δ is set conservatively to δHIGH . At the end of

every iteration, the δ threshold is lowered and the process repeats until no new entries are

added to the bad set, or δ reaches δLOW .

4.3.2 Sundial

The parameters of the solar cycle (sunrise, sunset, noon) follow a well defined pattern for

locations on Earth with a given latitude. This pattern is evident in Figure 4.4 that presents

67

Chapter 4. Time Reconstruction I - Sundial 4.3. Solution

●●

●●●●●●

●●

●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●●

●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●●

●

●

●●

●

●●

●●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●
●●

●●

●

●●

●●

●

●

●

●

●

●●●

●●●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●
●
●

●

●

●

●

●●●●●●●●●●●

●●

●●

●

●
●
●●●●●●●●●●●●●●

●
●
●

●
●
●●

●

●

●

●
●

●●

●

●

●●

●●

●●

●●

●

●
●●●●●●

●●●●
●
●

●

●

●

●

●
●

●

●

●●●●●

●●●

●

●●

●●
●
●

●●
●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●●●

●

●
●
●●

●●

●●
●
●

●●

●●●●

●●
●
●●

●

●

●●

●
●

●

●●
●

●
●

●

●

●
●

●

●
●
●

●●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●
●●

●●

●

0 100 200 300 400

8

10

12

14

16

Node 73

Days

Le
ng

th
 o

f d
ay

 [h
ou

rs
]

●
●

●

●

●

●

●

●●

●●

●●

●

●●●●

●●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●●

●●

●●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●●

●●
●
●

●

●

●●

●

●

●●

●
●
●

●●

●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●

●

●
●●●●
●

●
●
●
●

●

●

●
●
●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●
●

●

●●

●

●

●

●●

●
●
●

●
●

●●

●
●

●

●●●
●

●

●●

●

●●●

●

●●

●

●●

●

●

0 100 200 300 400

8

10

12

14

16

Node 76

Days

Le
ng

th
 o

f d
ay

 [h
ou

rs
]

Figure 4.6: The length of day pattern for two long segments belonging to different nodes. Day
0 represents the start-time for each of the segments.

the length of day (LOD) and solar noon for the period between January 2006 and June 2008

for the latitude of the L deployment. Note that the LOD signal is periodic and sinusoidal.

Furthermore, the frequency of the solar noon signal is twice the frequency of the LOD signal.

We refer the reader to [23] for more details on how the length of day can be computed for a

given location and day of the year.

The paragraphs that follow explain how information extracted from our light sensors can

be correlated with known solar information to reconstruct the measurement timestamps.

Extracting light patterns:

We begin by looking at the time series Li of light sensor readings for node i. Li is defined

for a single segment in terms of the local clock. First, we create a smooth version of this

series, to remove noise and sharp transients. Then, we compute the first derivative for the

smoothed Li series, generating the Di time-series. Figure 4.5 provides an illustration of

a typical Di series overlaid on the light sensor series (Li). One can notice the pattern of

inflection points representing sunrise and sunset. The regions where the derivative is high

represent mornings, while the regions where the derivative is low represent evenings. For

68

Chapter 4. Time Reconstruction I - Sundial 4.3. Solution

H
ou

rs
●●

●

●

●●●

●●

●

●●●●●

●

●

●

●●●●●●

●

●

●

●

●●

●●

●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●●●●●●

●●

●●●

●●●●

●

●●

●●

●

●●

●

●

●●●

●

●●●

●●●●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

●●

●

●●

●●

●

●●

●

●●●

●●●

●

●

●

●

●●●

●

●

●●●●●● ●

●●●●●●●●●●●

●●

●●

●

●

●●●●●●●●●●●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●●● ●●

●

●

●●●●●

●●●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●●

●

●

●●●

●●

●●

●●

●●●●

●●●●

●

●●

●

●

●

**

*

*

************************ ***********

******* * *********
*

**

*********** ***

Apr 2006 Jun 2006 Aug 2006 Oct 2006 Dec 2006 Feb 2007 Apr 2007

●

*
Model LOD
Model Noon

Computed LOD
Computed Noon

10
11

12
13

14
15

16

Figure 4.7: An illustration of the computed LOD and noon values for the lag with maximum
correlation with the solar model.

this method, we select sunrise to be the point at which the derivative is maximum and sunset

the point at which the derivative is minimum. Then, LOD is given as the difference between

sunrise and sunset, while noon is set to the midpoint between sunrise and sunset.

The method described above accurately detects noon time. However, the method intro-

duces a constant offset in LOD detection and it underestimates LOD due to a late sunrise

detection and an early sunset detection. The noon time is unaffected due to these equal

but opposite biases. In practice, we found that a simple thresholding scheme works best

for finding the sunrise and sunset times. The light sensors’ sensitivity to changes simplifies

the process of selecting the appropriate threshold. In the end, we used a hybrid approach

whereby we obtain noon times from the method that uses derivatives and LOD times from

the thresholding method. The net result of this procedure is a set of noon times and LOD

for each day from the segment’s start in terms of the local clock. Figure 4.6 shows the LOD

values obtained for two different node segments after extracting the light patterns.

69

Chapter 4. Time Reconstruction I - Sundial 4.3. Solution

Solar reconstruction of clocks:

The solar model provides the LOD and noon values in terms of the global clock (LODGT),

while the procedure described in the previous paragraph extracts the LOD and noon values

from light sensor measurements in terms of the motes’ local clocks (LODLT). In order to

find the best possible day alignment, we look at the correlation between the two LOD signals

(LODGT , LODLT) as a function of the lag (shift in days). The lag that gives us the maximum

correlation (ρmax) is an estimate of the day alignment. Mathematically, the day alignment

estimate (lag) is obtained as

arg maxlag Cor(LODGT , LODLT , lag)

where Cor(X,Y, s) is the correlation between time series X and Y shifted by s time units.

Figure 4.7 presents an example of the match between model and computed LOD and noon

times achieved by the lag with the highest correlation. The computed LOD time series tracks

the one given by the solar model. One also observes a constant shift between the two LOD

patterns, which can be attributed to the horizon effect. For some days, canopy cover and

weather patterns cause the extracted LOD to be underestimated. However, as the day align-

ment is obtained by performing a cross-correlation with the model LOD pattern, the result is

robust to constant shifts. Furthermore, Figure 4.7 shows that the equal and opposite effect of

sunrise and sunset detection ensures that the noon estimation in unaffected in the average

case.

After obtaining the day alignment, we use the noon information to generate anchor points.

Specifically, for each day of the segment we have available to us the noon time in local clock

(from the light sensors) and noon time in global clock (using the model). RGTR can then be

used to obtain robust values of α and β. This fit is used to reconstruct the global timestamps.

As Figure 4.4 suggests, the noon times change slowly over consecutive days as they oscillate

70

Chapter 4. Time Reconstruction I - Sundial 4.3. Solution

Day Offset Shift Anchor Points

RGTR
Global

Timestamps

Solar Model Light Timeseries

Correlation
Cross

Sundial

Length of Day Filter

Length of Day Length of Day
(local timestamps)

Noon
(local timestamps)

Noon
(global timestamps)(global timestamps)

Figure 4.8: The steps involved in reconstructing global timestamps using Sundial.

around 12:00. Thus, even if the day estimate is inaccurate, due to the small difference in

noon times, the α estimate remains largely unaffected. This implies that even if the day

alignment is not optimal, the time reconstruction within the day will be accurate, provided

that the noon times are accurately aligned. The result of an inaccurate lag estimate is that

β is off by a value equal to the difference between the actual day and our estimate. In other

words, β is off by an integral and constant number of days (without any skew) over the course

of the whole deployment period.

We find that this methodology is well suited in finding the correct α. To improve the

β estimate, we perform an iterative procedure which works as follows. For each iteration,

we obtain the best estimate fit (α, β). We convert the motes’ local timestamps into global

timestamps using this fit. We then look at the difference between the actual LOD (given by

the model) and the current estimate for that day. If the difference between the expected LOD

and the estimate LOD exceeds a threshold, we label that day as an outlier. We remove these

71

Chapter 4. Time Reconstruction I - Sundial 4.4. Evaluation

289 days
481 days

587 days
567 days

341 days
308 days

158 days
141 days

167 days
134 days

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

76
73
72
74

71
75

2,5
6

8,11,13,14
29,43,44,45

D
ep

lo
ym

en
t L

D
ep

lo
ym

en
t J

Feb 2006 Aug 2006 Feb 2007 Aug 2007 Feb 2008 Aug 2008

Figure 4.9: Node identifiers, segments and length of each segment (in days) for the two de-
ployments used in the evaluation.

outliers and perform the LOD cross-correlation to obtain the day shift (lag) again. If the new

lag differs from the lag in the previous iteration, a new fit is obtained by shifting the noon

times by an amount proportional to the new lag. We iterate until the lag does not change from

the previous iteration. Figure 4.8 shows a schematic of the steps involved in reconstructing

global timestamps for a segment.

4.4 Evaluation

We evaluate the proposed methodology using data from two deployments. Deployment J was

done at the Jug Bay wetlands sanctuary along the Patuxent river in Anne Arundel County,

Maryland. The data it collected is used to study the nesting conditions of the Eastern Box

turtle (Terrapene carolina) [65]. Each of the motes was deployed next to a turtle nest, whereas

some of them have a clear view of the sky while others are under multiple layers of tree

canopy. Deployment L, from Leakin Park, is described in Section 4.2.3.

Figure 4.9 summarizes the node identifiers, segments, and segment lengths in days for

each of the two deployments. Recall that a segment is defined as a block of data for which

the mote’s clock increases monotonically. Data obtained from the L dataset contained some

segments lasting well over 500 days. The L deployment uses MicaZ motes [17], while the J

72

Chapter 4. Time Reconstruction I - Sundial 4.4. Evaluation

E
rr

or
 [d

ay
s]

●

● ●

● ●

●

●

● ●

● ●

●

●

● ● ●

● ●

●

● ●

●

●

0

2

4

6

8

10

12

14

16

18

20

Deployment L Deployment J

Figure 4.10: Error in days for different
motes from the L and J deployments.

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 [m
in

ut
es

]

● ● ● ●

●

●

● ● ● ●

●

●

●

●

●
● ●

● ●

●

●

● ●

●

0

2

4

6

8

10

12

14

16

18

20

22

Deployment L Deployment J

Figure 4.11: Root mean square error in
minutes (RMSEmin).

deployment uses TelosB motes [50]. Motes 2, 5, and 6 from Deployment J collected samples

every 10 minutes. All other motes for both deployments had a sampling interval of 20 min-

utes. In addition to its on-board light, temperature, and humidity sensors, each mote was

connected to two soil moisture and two soil temperature sensors.

In order to evaluate Sundial’s accuracy, we must compare the reconstructed global times-

tamps it produces, with timestamps that are known to be accurate and precise. Thus we

begin our evaluation by establishing the ground truth.

4.4.1 Ground Truth

For each of the segments shown in Figure 4.9, a set of good anchor points (sampled using

the basestation) were used to obtain a fit that maps the local timestamps to the global times-

tamps. We refer to this fit as the Ground truth fit. This fit was validated in two ways. First,

we correlated the ambient temperature readings among different sensors. We also corre-

lated the motes’ measurements with the air temperature measurements recorded by nearby

73

Chapter 4. Time Reconstruction I - Sundial 4.4. Evaluation

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

ρρmax

D
ay

 E
rr

or
 [d

ay
s]

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

5

10

15

Figure 4.12: Relation between ρmax and
error in days.

●

●

●

●

●

●

0.9765754 0.9766024 0.9766295

0
10
20
30
40
50

pp
m

Deployment L

Deployment J

●

● ●

●
●

●

●

●

● ●●

0.999998 1.000129 1.000259

0

50

100

150

pp
m

Figure 4.13: α estimates from Sundial and
estimation errors in ppm.

weather stations. The weather station for the L deployment was located approximately 17

km away from the deployment site [1], while the one for the J deployment was located less

than one km away [45]. Considering the proximity of the two weather stations we expect that

their readings are strongly correlated to the motes’ measurements.

Note that even if the absolute temperature measurements differ, the diurnal temperature

patterns should exhibit the same behavior thus leading to high correlation values. Visual

inspection of the temperature data confirmed this intuition. Finally, we note that due to the

large length of the segments we consider, any inconsistencies in the ground truth fit would

become apparent for reasons similar to the ones provided in Section 4.2.2.

4.4.2 Reconstructing Global Timestamps using Sundial

We evaluate Sundial using data from the segments shown in Figure 4.9. Specifically, we

evaluate the accuracy of the timestamps reconstructed by Sundial as though the start time

of these segment is unknown (similar to the case of a mote reboot) and no anchor points

74

Chapter 4. Time Reconstruction I - Sundial 4.4. Evaluation

are available. Since we make no assumptions of the segment start-time, a very large model

(solar) signal needs to be considered to find the correct shift (lag) for the day alignment.

Evaluation Metrics:

We divide the timestamp reconstruction error to: (a) error in days; and (b) error in minutes

within the day. The error in minutes is computed as the root mean square error (RMSEmin)

over all the measurements. We divide the reconstruction error into these two components,

because this decoupling naturally reflects the accuracy of estimating the α and β parameters.

Specifically, if the α estimate were inaccurate, then, as Figure 4.2 suggests, the reconstruction

error would grow as a function of time. In turn, this would result in a large root mean

squared error in minutes within the day over all the measurements. On the other hand,

a low RMSEmin corresponds to an accurate estimate for α. Likewise, inaccuracies in the

estimation of β would result in large error in days.

Results:

Figures 4.10 and 4.11 summarize Sundial’s accuracy results. Overall, we find that longer

segments show a lower day error. Segments belonging to the L deployment span well over a

year and the minimum day error is 0 while the maximum day error is 6. In contrast, most of

the segments for deployment J are less than 6 months long and the error in days for all but

two of those segments is less than one week. Figure 4.12 presents the relationship between

the maximum correlation (ρmax) and the day error. As ρmax measures how well we are able to

match the LOD pattern for a node with the solar LOD pattern, it is not surprising that high

correlation is generally associated with low reconstruction error. The RMSEmin obtained for

each of the segments in deployment L is very low (see Figure 4.11) . Remarkably, we are able

75

Chapter 4. Time Reconstruction I - Sundial 4.4. Evaluation

to achieve an accuracy (RMSEmin) of under a minute for the majority of the nodes of the L

deployment even though we are limited by our sampling frequency of 20 minutes. Moreover,

RMSEmin error is always within one sample period for all but one segment.

Interestingly, we found that the α values for the two deployments were significantly dif-

ferent. This disparity can be attributed to differences in node types and thus clock logic.

Nonetheless, Sundial accurately determined α in both cases. Figure 4.13 presents the α val-

ues for the two deployments. We also show the error between the α obtained using Sundial

and the α value obtained by fitting the good anchor points sampled by the gateway (i.e.,

ground truth fit). The ppm error for both the deployments is remarkably low and close to the

operating error of the quartz crystal.

4.4.3 Impact of Segment Length

Sundial relies on matching solar patterns to the ones observed by the light sensors. The nat-

ural question to ask is: what effect does the length of segment have on the reconstruction

error. We address this question by experimenting with the length of segments and observing

the reconstruction error in days and RMSEmin. We selected data from three long segments

from deployment L. To eliminate bias, the start of each shortened segment was chosen from a

uniform random distribution. Figure 4.15 shows that the RMSEmin tends to be remarkably

stable even for short segments. One concludes that even for short segment lengths, Sun-

dial estimates the clock drift (α) accurately. Figure 4.14 shows the effect of segment size on

day error. In general, the day error decreases as the segment size increases. Moreover, for

segments less than 150 days long, the error tends to vary considerably.

76

Chapter 4. Time Reconstruction I - Sundial 4.4. Evaluation

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●
●●
●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●● ●●

80 120 160 200 240 280

0
10

20
30

40
50

60
70

Segment Length [days]

D
ay

 E
rr

or
 [d

ay
s]

Figure 4.14: Error in days as a function of
segment size.

●

●

●●

●

●
● ●

●

●

●

●

●
●

●

●●
●●

●

●

●

●
●●●

●

●

●
●

●●

● ●

●●●

●

●

●●
●

●

●●
●
●

●

●
●

●

●●

80 120 160 200 240 280

0
10

20
30

40

Segment Length [days]

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 [m
in

ut
es

]

Figure 4.15: Error in minutes (RMSEmin)
as a function of segment size.

4.4.4 Day Correction

The results so far show that 88% (15 out of 17) of the motes have a day offset of less than a

week. Next, we demonstrate how global events can be used to correct for the day offset. We

looked at soil moisture data from eight motes of the J deployment after obtaining the best

possible timestamp reconstruction. Specifically, we correlated the motes’ soil moisture data

with rainfall data to correct for the day offset. We used rainfall data from a period of 133

days, starting from December 4, 2007, during which 21 major rain events occurred. To calcu-

late the correlation, we created weighted daily vectors for soil moisture measurements (SM)

whose value was greater than a certain threshold and similarly rainfall vectors having a daily

precipitation (PPT) value of greater than 4.0 cm. Next, we extracted the lag at which the

cosine angle between the two vectors (cosine similarity, θSM−PPT) is maximum. This method

is inspired by the well-known document clustering model used in the information retrieval

community [56]. Note that we computed θSM−PPT for a two-week window (± seven days)

of lags and found that seven out of the eight motes could be aligned perfectly. Figure 4.16

77

Chapter 4. Time Reconstruction I - Sundial 4.5. Related Work

0 15 30 45 60 75 90 105 120

Days

Soil moisture Rainfall

1

2

3

4

5

6

7

La
g

[d
ay

s]

Cosine
Similarity

Figure 4.16: An illustration of the cosine similarity (θSM−PPT) values for seven different day
lags between moisture and rainfall vectors. θSM−PPT peaks at the correct lag of five days,
providing the correct day adjustment.

illustrates the soil moisture vectors, rainfall vectors and the associated θSM−PPT for seven

lags for one of the segments. Note that θSM−PPT peaks at the correct lag of five, leading to

the precise day correction. While we use soil moisture to illustrate how global events can be

used to achieve macro-level clock adjustments, other modalities can also be used based on

the application’s parameters.

4.5 Related Work

This study proposes a solution to the problem of postmortem timestamp reconstruction for

sensor measurements. To our knowledge, there is little previous work that addresses this

problem for deployments that span a year or longer. Deployment length can be an issue be-

cause the reconstruction error monotonically increases as a function of time (cf. Sec.4.2.2).

The timestamp reconstruction problem was first introduced by Werner-Allen et al. who pro-

vided a detailed account of the challenges they faced in synchronizing mote clocks during

a 19-day deployment at an active volcano [73]. Specifically, while the system employed the

78

Chapter 4. Time Reconstruction I - Sundial 4.6. Conclusion

FTSP protocol to synchronize the network’s motes, unexpected faults forced the authors to

rely on an offline time rectification algorithm to reconstruct global timestamps.

While experiences such as the one reported in [73] provide motivation for an independent

time reconstruction mechanism such as the one proposed in this paper, the problem addressed

by Werner-Allen et al. is different from the one we aim to solve. Specifically, the volcano

deployment had access to precise global timestamps (through a GPS receiver deployed at the

site) and used linear regression to translate local timestamps to global time, once timestamp

outliers were removed. While RGTR can also be used for outlier detection and timestamp

reconstruction, Sundial aims to recover timestamps in situations where a reliable global clock

source is not available. A system similar in spirit to Sundial is presented by Lukac et al.

[36]. This system achieves temporal integrity by using the data and a model for microseism

propagation to time-correct the data collected by their seismic sensors.

Finally, Chang et. al. [13] describe their experiences with motes rebooting and resetting of

logical clocks, but do not furnish any details of how they reconstructed the global timestamps

when this happens.

4.6 Conclusion

In this paper we present Sundial, a method that uses light sensors to reconstruct global

timestamps. Specifically, Sundial uses light intensity measurements, collected by the motes’

on-board sensors, to reconstruct the length of day (LOD) and noon time throughout the de-

ployment period. It then calculates the slope and the offset by maximizing the correlation

between the measurement-derived LOD series and the one provided by astronomy. Sundial

operates in the absence of global clocks and allows for random node reboots. These features

make Sundial very attractive for environmental monitoring networks deployed in harsh envi-

ronments, where they operate disconnected over long periods of time. Furthermore, Sundial

79

Chapter 4. Time Reconstruction I - Sundial 4.6. Conclusion

can be used as an independent verification technique along with any other time reconstruc-

tion algorithm.

Using data collected by two network deployments spanning a total of 2.5 years we show

that Sundial can achieve accuracy in the order of a few minutes. Furthermore, we show that

one can use other global events such as rain events to correct any day offsets that might exist.

As expected, Sundial’s accuracy is closely related to the segment size. In this study, we per-

form only a preliminary investigation on how the length of the segment affects accuracy. An

interesting research direction we would like to pursue is to study the applicability of Sundial

to different deployments. Specifically, we are interested in understanding how sampling fre-

quency, segment length, latitude and season (time of year) collectively affect reconstruction

accuracy.

Sundial exploits the correlation between the well-understood solar model and the mea-

surements obtained from inexpensive light sensors. In principle, any modality having a well-

understood model can be used as a replacement for Sundial. In the absence of a model, one

can exploit correlation from a trusted data source to achieve reconstruction, e.g., correlating

the ambient temperature measurement between the motes with data obtained from a nearby

weather station. However, we note that many modalities (such as ambient temperature) can

be highly susceptible to micro-climate effects and exhibit a high degree a spatial and tempo-

ral variation. Thus, the micro-climate invariant solar model makes light a robust modality

to reconstruct timestamps in the absence of any sampled anchor points.

Finally, we would like to emphasize the observation that most environmental modalities

are affected by the diurnal and annual solar cycles and not by the human-created universal

time. In this regard, the time base that Sundial establishes offers a more natural reference

basis for environmental measurements.

80

Chapter 5

Time Reconstruction II - Phoenix

One of the big take aways from Sundial was to collect enough number of (local,global) ref-

erence points so that all the segments can be assigned a global timestamps. Employing a

persistent basestation and performing regular downloads seemed like a reasonable way to

achieve this. In the Cub Hill deployment, we put this to practise and it worked out well for

the vast majority of segments. One of the things we overlooked was that the basestation is

susceptible to failures and performing regular downloads may not always be possible due to

power constraints.

In this chapter, I will present the reasons behind why we needed to design a new time

reconstruction methodology that does not require a persistent global clock source and can

tolerate random mote resets. I’ll present a summary of Phoenix at this point and details of

the method in the rest of the chapter.

Motes in Phoenix exchange their time-related state with their neighbors, establishing a

chain of transitive temporal relationships to one or more motes with references to the global

time. These relationships allow Phoenix to reconstruct the measurement timeline for each

mote. Results from simulations and a deployment indicate that Phoenix can achieve timing

accuracy up to 6 ppm for 99% of the collected measurements. Phoenix is able to maintain

this performance for periods that last for months without a persistent global time source.

81

Chapter 5. Time Reconstruction II - Phoenix 5.1. Introduction

To achieve this level of performance for the targeted environmental monitoring application,

Phoenix requires an additional space overhead of 4% and an additional duty cycle of 0.2%.

5.1 Introduction

Wireless sensor networks have been used recently to understand spatiotemporal phenomena

in environmental studies [38, 69]. The data these networks collect are scientifically useful

only if the collected measurements have corresponding, accurate global timestamps. The

desired level of accuracy in this context is in the order of milliseconds to seconds. In order

to reduce complexity of the code running on the mote, it is more efficient to record sensor

measurements using the mote’s local time frame and perform a postmortem reconstruction

to translate them to global time.

Each mote’s clock (referred to as local clock henceforth) monotonically increases and resets

to zero upon reboot. A naive postmortem time reconstruction scheme collects 〈local, global〉

pairs during a mote’s lifetime, using a global clock source (typically, an NTP-synchronized

PC). These pairs (also referred to as “anchor points”) are then used to translate the col-

lected measurements to the global time frame by estimating the motes’ clock skew and offset.

We note that this methodology is unnecessary for architectures such as Fleck, which host

a battery-backed on-board real-time clock (RTC) [15]. However, many commonly-used plat-

forms such as Telos, Mica2, MicaZ, and IRIS (among others) lack an on-board RTC.

In the absence of reboots, naive time reconstruction strategies perform well. However,

in practice, motes reboot due to low battery power, high moisture, and software defects.

Even worse, when motes experience these problems, they may remain completely inactive

for non-deterministic periods of time. Measurements collected during periods which lack

〈local, global〉 anchors (due to rapid reboots and/or basestation absence) are difficult or impos-

sible to accurately reconstruct. Such situations are not uncommon based on our deployment

82

Chapter 5. Time Reconstruction II - Phoenix 5.2. Motivation

experiences and those reported by others [73].

In this work, we devise a novel time reconstruction strategy, Phoenix, that is robust to

random mote reboots and intermittent connection to the global clock source. Each mote peri-

odically listens for its neighbors to broadcast their local clock values. These 〈local, neighbor〉

anchors are stored on the mote’s flash. The system assumes that one or more motes can pe-

riodically obtain global time references, and they store these 〈local, global〉 anchors in their

flash. When the basestation collects the data from these motes, an offline procedure converts

the measurements timestamped using the motes’ local clocks to the global time by using the

transitive relationships between the local clocks and global time.

The offline nature of Phoenix has two advantages: (a) it reduces the complexity of the

software running on the mote, and (b) it avoids the overhead associated with executing a

continuous synchronization protocol. We demonstrate that Phoenix can reconstruct global

timestamps accurately (within seconds) and achieve low (< 1%) data losses in the presence

of random mote reboots even when months pass without access to a global clock source.

5.2 Motivation

We claim that the problem of rebooting motes is a practical aspect of real deployments that

has a high impact on environmental monitoring applications. We also quantify the frequency

and impact of reboots in a long-term deployment. We begin by understanding why mote

reboots complicate postmortem time reconstruction.

5.2.1 Postmortem Timestamp Reconstruction

The relationship between a mote’s local clock, LTS, and the global clock,GTS, can be modeled

with a simple linear relation: GTS = α×LTS+β, where α represents the mote’s skew and β

83

Chapter 5. Time Reconstruction II - Phoenix 5.2. Motivation

Basestation

20 meters

Figure 5.1: The 53-mote “Cub Hill” topology, located in an urban forest northeast of Baltimore,
Maryland.

represents the intercept (global time when the mote reset its clock) [55]. This conversion from

the local clock to global clock holds as long as the mote’s local clock monotonically increases

at a constant rate. We refer to this monotonically increasing period as a segment. When a

mote reboots and starts a new segment, one needs to re-estimate the fit parameters. If a mote

reboots multiple times while it is out of contact with the global clock source, estimating β for

these segments is difficult. While data-driven treatments have proven useful for recovering

temporal integrity, they cannot replace accurate timestamping solutions [27, 36]. Instead,

time reconstruction techniques need to be robust to mote reboots and not require a persistent

global time source.

5.2.2 Case Studies

We present two cases which illustrate the deployment problems that Phoenix intends to ad-

dress. The first is an account of lessons learned from a year-long deployment of 53 motes.

The second is a result of recent advances in solar-powered sensor networks.

Software Reboots. We present “Cub Hill”, an urban forest deployment of 53 motes that

has been active since July 2008 (Figure 5.1). Sensing motes collect measurements every 10

84

Chapter 5. Time Reconstruction II - Phoenix 5.2. Motivation

Reboot Reboot Reboot

Ja
n

11

Ja
n

12

Ja
n

13

Ja
n

14

Ja
n

15

Ja
n

16

Ja
n

17

Ja
n

18

Ja
n

19

Ja
n

20

Ja
n

21

Ja
n

22

Ja
n

23

Ja
n

24

Ja
n

25

Ja
n

26

Ja
n

27

Ja
n

28

Ja
n

29

Ja
n

30

Ja
n

31

F
eb

 0
1

F
eb

 0
2

2.6

2.8

3.0

3.2

3.4

3.6

B
at

te
ry

 V
o

lt
ag

e
(V

o
lt

s)

Figure 5.2: An example of a mote rebooting due to low battery voltage (no watchdog timer in
use). The sharp downward spikes correspond to gateway downloads (every six hours). Gaps
in the series are periods where the mote was completely inoperative.

minutes to study the impact of land use on soil conditions. The basestation uses the Koala

protocol to collect data from these motes every six hours [44]. We use TelosB motes driven by

19 Ah, 3.6 V batteries.

We noticed that motes with low battery levels and/or high internal moisture levels suf-

fered from periodic reboots. As an example, Figure 5.2 shows the battery voltage of a mote

that rebooted thrice in one month. Despite their instability, many of these motes were able

to continue collecting measurements for extended periods of time.

Following a major network expansion, a software fault appeared which caused nodes to

“freeze”. Unable to reproduce this behavior in a controlled environment, we employed the

MSP430’s Watchdog Timer to reboot motes that enter this state [68]. While this prevented

motes from completely failing, it also shortened the median length of the period between

reboots from more than 50 days to only four days, as Figure 5.3 shows.

Solar Powered Sensor Networks. A number of research groups have demonstrated the

use of solar energy as a means of powering environmental monitoring sensor networks [37,

66]. In such architectures, a mote can run out of power during cloudy days or at night.

Motes naturally reboot in such architectures, and data losses are unavoidable due to the

lack of energy. It is unclear how one can achieve temporal reliability without a persistent

85

Chapter 5. Time Reconstruction II - Phoenix 5.2. Motivation

0.25 0.5 1 2 3 4 10 50 100

0.00

0.25

0.50

0.75

1.00

P
ro

b
ab

ili
ty

Segment Length (days)

Pre Watchdog
Post Watchdog

Figure 5.3: The distribution of the segment lengths before and after adding the watchdog
timer to the mote software.

basestation or an on-board RTC. To the best of our knowledge, no one has addressed the

issue of temporal integrity in solar-powered sensor networks. Yang et al. employ a model in

which data collection happens without a persistent basestation [75]. The data upload takes

place infrequently and opportunistically. Hard-to-predict reboot behavior is common to these

systems. Furthermore, we note that even though there is very little information about the

rate of reboots in such architectures, it is clear that such systems are susceptible to inaccurate

timestamp assignments.

5.2.3 Impact

We evaluate the impact of mote reboots on the Cub Hill deployment using our existing time

reconstruction methodology.

The basestation records an anchor point each time it downloads data from a mote. Motes

that are poorly connected to the basestation may remain out of contact for several download

rounds before connectivity improves and they can transfer their data. When motes reboot at

a rate faster than the frequency with which the basestation contacts them, there exist periods

which lack enough information to accurately reconstruct their measurement timestamps.

Upon acquiring the anchor points, the measurements are converted from their local clock

to the global clock at the basestation. We employ our previously proposed algorithm, Robust

86

Chapter 5. Time Reconstruction II - Phoenix 5.2. Motivation

A: Nodes gets stuck C: Basestation is down

D: Reboot problemsB: Watchdog timer fix

No timestamp
Approximate

Accurate

Lost

Le
ge

nd

Ju
l 2

00
8

A
ug

 2
00

8
A

ug
 2

00
8

A
ug

 2
00

8
A

ug
 2

00
8

S
ep

 2
00

8
S

ep
 2

00
8

S
ep

 2
00

8
S

ep
 2

00
8

S
ep

 2
00

8
O

ct
 2

00
8

O
ct

 2
00

8
O

ct
 2

00
8

O
ct

 2
00

8
N

ov
 2

00
8

N
ov

 2
00

8
N

ov
 2

00
8

N
ov

 2
00

8
D

ec
 2

00
8

D
ec

 2
00

8
D

ec
 2

00
8

D
ec

 2
00

8
D

ec
 2

00
8

Ja
n

20
09

Ja
n

20
09

Ja
n

20
09

Ja
n

20
09

F
eb

 2
00

9
F

eb
 2

00
9

F
eb

 2
00

9
F

eb
 2

00
9

M
ar

 2
00

9
M

ar
 2

00
9

M
ar

 2
00

9
M

ar
 2

00
9

M
ar

 2
00

9
A

pr
 2

00
9

A
pr

 2
00

9
A

pr
 2

00
9

M
ay

 2
00

9
M

ay
 2

00
9

M
ay

 2
00

9
M

ay
 2

00
9

Ju
n

20
09

Ju
n

20
09

Ju
n

20
09

Ju
n

20
09

Ju
n

20
09

Ju
l 2

00
9

Ju
l 2

00
9

Ju
l 2

00
9

Ju
l 2

00
9

P
er

ce
n

ta
g

e

(a) The fraction of measurements that were assigned timestamps.

Jun 20 Jun 21 Jun 22 Jun 23 Jun 24 Jun 25 Jun 26 Jun 27

0

200

400

600

800

1000

L
ig

h
t

(A
D

C
)

(b) An example of the impact of estimating β incorrectly when using approximate methods.
Data from one of the motes (represented with the dark line) that rebooted multiple times be-
tween Jun. 22 and Jun. 25. During this period, the mote was out of sync with the rest (shown
in gray) due to inaccurate β estimates

Figure 5.4: Impact of time reconstruction methodology using the RGTR algorithm.

Global Timestamp Reconstruction algorithm (referred to as RGTR), for this purpose [27]. We

note that in order to estimate the fit parameters (α, β) for the segments, RGTR requires at

least two anchor points. Depending on the accuracy requirements, one can assume that the

skew (α) is stable per mote for small segments. Using this assumption, at least one anchor

point is needed to estimate the β for any given segment, provided that α has been estimated

accurately for the mote.

Figure 5.4(a) demonstrates the impact of mote reboots on time reconstruction for the Cub

Hill deployment. During period A, motes were prone to freezing (and thus stopped sampling),

leading to a decrease in the total data collected. At point B, the addition of the watchdog timer

caused the total data collected to return to its previous level. However, due to the increased

frequency of reboots, a larger portion of the samples could not be assigned a global timestamp

(exacerbated by the absence of the base station during period C).

For segments where no anchor points were collected, we assumed that node reboots are

87

Chapter 5. Time Reconstruction II - Phoenix 5.3. Solution

instantaneous. However, this assumption does not always hold (see Figure 5.2) and leads

to a small fraction of misaligned measurements. Figure 5.4(b) presents an example of this

misalignment. One node (shown in bold) rebooted multiple times and could not reach the

basestation during its active periods. The assumption of instantaneous reboots led to inaccu-

rate β estimates.

5.3 Solution

Phoenix is a postmortem time reconstruction algorithm for motes operating without in-network

time synchronization. It consists of two stages.

5.3.1 In-Network Anchor Collection

Each mote operates solely with respect to its own local clock. A new segment (uniquely

identified by 〈moteid, reboot count〉) begins whenever a mote reboots: each segment starts at

a different time and may run at a different rate. Our architecture assumes that there is at

least one mote in the network that can periodically obtain references from an accurate global

time source. This is done to establish the global reference points needed by Phoenix. This

source may be absent for long periods of time (see Section 5.4). The global time source can

be any reliable source (a mote equipped with a GPS receiver, NTP-synced basestation, etc).

Without loss of generality, we assume that the network contains a mote connected to GPS

device and a basestation that collects data infrequently1.

All motes (including the GPS-connected mote) broadcast their local clock and reboot-count

values every Tbeacon seconds. Each receiving mote stores this information (along with its own

local clock and reboot counter) in flash to form anchor records. The format of these records

is 〈moteidr, rcr, lcr,moteids, rcs, lcs〉; where rc, lc, r, and s refer to the reboot counter, local
1Note that the basestation collects data only and it does not provide a time source, unless specified otherwise.

88

Chapter 5. Time Reconstruction II - Phoenix 5.3. Solution

clock, receiver and sender respectively. Periodically, motes turn on their radios and listen

for broadcasts in order to anchor their time frame to those of their neighbors. Each mote

tries to collect this information from its neighbors after every reboot and after every Twakeup

seconds (� Tbeacon). The intuition behind selecting this strategy is as follows. The reboot

time determines the β parameter. The earliest opportunity to extract this information is

immediately after a reboot. To get a good estimate of the skew, one would like to collect

multiple anchors that are well distributed in time. Thus, Twakeup is a parameter that governs

how far to spread out anchor collections. In the case of a GPS mote, the moteidr, rcr and

moteids, rcs are identical, and lcr, lcs represent the local and global time respectively.

The basestation periodically downloads these anchors along with the measurements. This

information is then used to assign global timestamps to the collected measurements using

Algorithm 2. If the rate of reboots is known, the anchor collection frequency can be fixed

conservatively to collect enough anchors between reboots. One could also employ an adaptive

strategy by collecting more anchors when the segment is small and reverting to a larger

Twakeup when an adequate number of anchors have been collected. It is advantageous for a

mote to attempt to collect anchors from a small set of neighbors (to minimize storage), but

this requires a mote to have some way of identifying the most useful segments for anchoring

(see Section 5.4).

5.3.2 Offline Timestamp Reconstruction

The Phoenix algorithm is intuitively simple. We will outline it in text and draw attention to a

few important details. For a more complete treatment, please refer to the pseudocode in Algo-

rithm 2. Phoenix accepts as input the collection of all anchor points AP (both 〈local, neighbor〉

and 〈local, global〉). It then employs a least-square linear regression to extract the relation-

89

Chapter 5. Time Reconstruction II - Phoenix 5.3. Solution

Algorithm 2 Phoenix
Ensure:
a, b : alpha and beta for local-local fits;
P : parent segment; Π : Ancestor segments

procedure PHOENIX(AP)
for each (i, j) in KEYS(AP) do . All unique segment pairs in AP
LFa,b,χ,df (i, j)← LLSE(AP (i, j)) . Compute the local-local fits

for each s ∈ S do . Set of all unique segments
GFα,β,P,Π,χ,df (s)← (∅, ∅, ∅, s, χMAX , ∅) . Initialize global fits

for each g ∈ G do . All segments anchored to GTS
INITGTSNODES(g, LF,GF)
ENQUEUE(Q, g) . Add all the GTS nodes to the queue

while NOTEMPTY(Q) do
q ← DEQUEUE(Q)
C ← NEIGHBORANCHORS(q)
for each c ∈ C do
Tα,β,P,Π,χ,df (c)←GLOBALFIT(c, q, GF, LF)
if (UPDATEFIT(c, T,GF)) then . Check for a better fit

ENQUEUE(C)
return GF

procedure INITGTSNODES(g, LF,GF)
GF (g)← (LFa(g, g′), LFb(g, g

′), ∅, g, LFχ(g, g′), LFdf (g, g′)) . g′ is GTS, g is LTS

procedure GLOBALFIT(c, q, GF, LF)
if q > c then . Smaller segment is the independent variable
αnew ← GFα(q) ∗ LFa(q, c)
βnew ← GFα(q) ∗ LFb(q, c) +GFβ(q)

else
αnew ← GFα(q)/LFa(q, c)
βnew ← GFα(q)− αnew ∗ LFb(q, c)

χ←
GFdf (q)∗GFχ(q)+LFdf (q,c)∗LFχ(q,c)

GFdf (q)+LFdf (q,c) . Compute the weighted GOF metric.

df ← GFdf (q) + LFdf (q, c)
return (αnew, βnew, q, {c ∪GFΠ(q)}, χ, df) . Update parent/ancestors

procedure UPDATEFIT(c, T,GF)
if c ∈ TΠ(c) then . Check for cycles

return false
if Tχ(c) < GFχ(c) then
GFα,β,P,Π,χ,df (c)← Tα,β,P,Π,χ,df (c)
return true

else
return false

ships between the local clocks of the segments that have anchored to each other (LF , for Local

Fit). In addition to LFa(i, j) (slope), LFb(i, j) (intercept), Phoenix also obtains a goodness-of-fit

(GOF) metric, LFχ(i, j) (unbiased estimate of the variance of the residuals) and LFdf (degrees

of freedom). For segments which have global references, Phoenix stores this asGF (for Global

Fit).

The algorithm then initializes a queue with all of the segments which have direct anchors

to the global clock. It dequeues the first element q and examines each segment c that has an-

chored to it. Phoenix uses the transitive relationship between GF (q) and LF (q, c) to produce

90

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

a global fit T (c) which associates segment c to the global clock through segment q. If Tχ(c)

is lower than the previous value for GFχ(c) (and using q would not create a cycle in the path

used to reach the global clock), the algorithm replaces GF (c) with T (c), and places c in the

queue. When the queue is empty, no segments have “routes” to the global clock which have

a better goodness-of-fit than the ones which have been previously established. At this point,

the algorithm terminates.

The selection of paths from an arbitrary segment to a segment with global time references

can be thought of as a shortest-path problem (each segment represents a vertex and the fit

between the two segments is an edge). The GOF metric represents the edge weight. The

running time complexity of the implementation of Phoenix was validated experimentally by

varying the deployment lifetime (thereby varying number of segments). The runtime was

found to increase slower than the square of the number of segments.

5.4 Evaluation

We evaluate the effect of varying several key parameters in Phoenix using both simulated

and real datasets. We begin by describing our simulator.

5.4.1 Simulator

Our goal is to minimize the data loss in long-term deployments. Hence, we fix the simulation

period to be one year. We also assume that the basestation is not persistently present and

does not provide a time source to the network. The network contains one global clock source

(a GPS mote) that is susceptible to failures. The main components of the simulator are de-

scribed below. The default values for the simulator are based on empirical data obtained from

the one year long Cub Hill deployment.

91

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

Clock Skew: The clock skew for each segment is drawn from a uniformly distributed random

variable between 40 ppm and 70 ppm. Burri et al. report this value to be between 30 and 50

ppm at room temperature2 [10].

Segment Model: We use the non-parametric segment-length model based on the Cub Hill

deployment after the watchdog timer fix (Figure 5.3). Additionally, after a reboot, we allowed

the mote to stay inactive for a period that is randomly drawn between zero and four hours

with a probability given by pdown = 0.2 . The GPS mote’s behavior follows the same model.

Communication Model: The total end-to-end communication delay for receiving anchor

packets is drawn uniformly between 5 and 15 milliseconds. This time includes the interrupt

handling, transmission, reception and propagation delays. To model the packet reception

rate (PRR), we use the log-distance path loss model as described in [53,76] with parameters:

(Pr(d0), η, σ, d0) = (−59.28, 2.04, 6.28, 2.0m).

Topology: The Cub Hill topology was used as the basis for all simulations.

Event Frequencies: Motes recorded a 26-byte sample every 10 minutes. They beacon their

local clock values with an interval of Tbeacon. They stay up after every reboot and periodically

after an interval of Twakeup to collect these broadcasts. While up, they keep their radios on

for a maximum of Tlisten. The GPS mote collects 〈local, global〉 anchors with a rate of Tsync.

By default, Tbeacon, Twakeup, Tlisten and Tsync were set to 30 s, 6 h, 30 s and 6 h respectively.

Maximum Anchorable Segments: To minimize the space overhead in storing anchors, we

limit the number of segments that can be used for anchoring purposes. At any given time,

a mote can only store anchors for up to NUMSEG segments. The default NUMSEG value

is set to four. Motes stop listening early once they collect NUMSEG anchors in a single

interval.
2We ignore the well-studied temperature effects on the quartz crystal. For a more complete treatment on the

temperature dependence, refer to [41,46].

92

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

− − − − − − − − − − − − − − − −− − − − − − − − −
− − −

− −

− −

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
5

10

15

20

25

P
P

M
 E

rr
o

r

Days without a global clock source

(a) The effect of a missing global clock source on accuracy.

− − − − − − − −
−

−

−

− − − − − −
− −

−

−

−

6h 9h 12
h

15
h

18
h 1d

1d
8h

1d
16

h 2d 3d 5d

0

10

20

30

40

50

D
at

a
lo

ss
 (

%
)

Twakeup

(b) The impact of Twakeup on data loss.

0.99

1.00

1.01

1.02

1.03

1.04

α
0.0e+00
5.0e+11
1.0e+12
1.5e+12

χ

0 30 60 90 150 210 270 330

Deployment Days

(c) Robustness to bad anchors.

Figure 5.5: Evaluation of Phoenix in simulation. In (c), faults were injected to GPS anchors
after day 237. Figure shows the α and χ values for the GPS mote for the entire period.

Eviction Policy: Since segments end and links between motes change over time, obsolete

or rarely-heard segments need to be evicted from the set of NUMSEG segments for which a

mote listens. The timeout for evicting stale entries is set to 3 × Twakeup. We evaluated three

different strategies for selecting replacements for evicted segments. First-come, first-served

(FCFS) accepts the first segment that is heard when a vacancy exists. RAND keeps track of

the previous segments that were heard and selects a new segment to anchor with at random.

Longest local clock (LLC) keeps track of the local clock values of the segments that are heard

and selects the segment that has the highest local clock. FCFS was chosen as the default.

93

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

5.4.2 Evaluation metrics

Data loss (DL): The fraction of data that cannot be assigned any timestamps, expressed as

a percentage.

PPM Error: The average error (in parts per million) for the assigned timestamps. PPM

error is |t
′−t|
tδ
×106, where t is the true timestamp of the measurement, t′ is the assigned

timestamp, and tδ denotes the elapsed time since the start of the segment in terms of

the real clock.

Space overhead: The fraction of space that is used for storing anchors relative to the total

space used, expressed as a percentage.

Duty cycle: The fraction of time the radio was kept on for anchor collection and beaconing,

expressed as a percentage.

5.4.3 Simulation Experiments

Dependence on Global Clock Source: We studied the effect of the global clock’s absence

on data loss. We assume that the network contains one GPS mote that serves as the global

clock source and it is inoperative for a specified amount of time. In order to avoid bias, we

randomly selected the starting point of this period and varied the GPS down time from 0 to

150 days in steps of 10. Figure 5.5(a) shows the effect on the reconstruction using 60 inde-

pendent runs. The accuracy decreases as the number of days without GPS increases, but we

note that this decrease is tolerable for our target applications. The data loss stayed relatively

stable at 0.21%, even when the global clock source is absent for as long as 5 months. We

note that in a densely connected network, the number of paths between any two segments is

94

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

combinatorial, and hence, the probability of finding a usable path is very high3. The variance

of the error increased with the length of the gateway’s absence.

Dependence on Wake-up Interval: Figures 5.5(b) show the effect of varying wake-up

rate on data loss. As expected, data loss increases as the rate of anchor collection decreases.

This curve is strongly related to the segment model: if collections are less frequent than

reboots, many segments will fail to collect enough anchors to be reconstructed.

Robustness: We studied the effect of faulty global clock references on time reconstruction.

Noise from a normal distribution (µ = 60 min., σ =10 min.) was added to the global references

for a period of 128 days. Figure 5.5(c) shows the alpha and χ values for the GPS mote during

the entire simulation period. One can also notice the correlation between high χ values and

α values that deviate from 1.0 in Figure 5.5(c). These faults did not change the data loss

rate. The faults increased the PPM error from 4.03 to 16.5. Although these faults decreased

accuracy, this decrease is extremely small in comparison to the magnitude of the injected

errors and within the targeted accuracy requirements. Phoenix extracted paths which were

least affected by these faults by using the χ metric.

Effect of eviction andNUMSEG: We studied the effect ofNUMSEG on space, duty cycle,

and data loss. The space overhead increases linearly with NUMSEG (Figure 5.6(a)). The

impact on duty cycle4 was quite low (Figure 5.6(b)). A constant duty cycle penalty of 0.075%

is incurred due to the beaconing messages sent every 30 s [44]. At low values of NUMSEG,

motes are able to switch off their radios early (once they have heard announcements from

segments they have anchored with), while at higher values, they need to stay on for the
3One can estimate the probability for finding a usable path using Warshall’s algorithm [16]. The input to this

algorithm would be a connectivity matrix where the entries represent the anchoring probabilities of the neighbor
segments.

4Note that the duty cycle that we are referring to does not consider the communication costs during data down-
loads. Reducing the storage requirements would reduce the communication costs when the basestation collects data.

95

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

FCFS
RAND
LLC

S
p

ac
e

o
ve

rh
ea

d
 (

%
)

NUMSEG

(a) Space overhead in storing anchors as a
function of NUMSEG.

2 3 4 5 6 7 8

0.180

0.185

0.190

0.195

0.200

0.205

0.210

0.215

FCFS
RAND
LLC

D
u

ty
 c

yc
le

 (
%

)

NUMSEG

(b) Duty cycle as a function of NUMSEG.

2 3 4 5 6 7 8

0.10

0.15

0.20

0.25

0.30

0.35

0.40 FCFS
RAND
LLC

D
at

a
lo

ss
 (

%
)

NUMSEG

(c) Data loss as a function of NUMSEG.

3 4 5 6 7 8 9 10 11 12 13 14

0.010

0.015

0.020

0.025

0.030

0.035

D
at

a
lo

ss
 (

%
)

Neighbor density

(d) Effect of varying node density on data loss with no
eviction policy.

Figure 5.6: Effect of NUMSEG on different eviction policies.

entire Tlisten period. Increasing NUMSEG decreases data loss, because motes have a better

chance of collecting good segments to anchor with. We found that the FCFS eviction policy

outperforms LLC and RAND. We found no significant differences in the PPM error results as

we vary NUMSEG, and hence, we do not report those results here.

Neighbor Density: In this experiment, we removed links from the Cub Hill topology until

we obtained the desired neighbor density. At every step, we ensured that the network was

fully connected. We did not find any significant impact on performance as the average number

of neighbors was decreased. In this experiment, the radios were kept on for the entire Tlisten

period, and no eviction policy was employed. This was done to compare the performance at

each density level at the same duty cycle. Figure 5.6(d) presents our findings.

96

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

5.4.4 Deployment - I

We deployed a network (referred to as the “Olin” network) of 19 motes arranged in a grid

topology in an urban forest near the Johns Hopkins University campus in Baltimore, MD.

Anchors were collected for the entire period of 21 days using the methodology described in

Section 5.3.1. The basestation collected data from these motes once every four hours and

the NTP-corrected clock of the basestation was used as a reliable global clock source. The

motes rebooted every 5.7 days on average, resulting in a total of 62 segments. The maximum

segment length was 19 days and the minimum was two hours.

Perceived Ground Truth: It is very difficult to establish absolute ground truth in field

experiments. Instead, we establish a synthetic ground truth by reconstructing timestamps

using all the global anchors obtained from the basestation5. We record the α and β values for

each segment and use these values as ground truth. Because we downloaded data every four

hours we obtained enough global anchors from the motes to be confident with the derived

ground truth estimates.

Emulating GPS node and Basestation Failure: In order to emulate a GPS mote, we

selected a single mote (referred to as G-mote) that was one hop away from the basestation.

We used the G-mote’s global anchors obtained from the basestation as though they were

taken using a GPS device. We ignored all other global anchors obtained from other motes.

Furthermore, to emulate the absence of the basestation for N days, we discarded all the

anchors taken by the G-mote during that N -day long period. We tested for values of N from

one to eighteen.
5Note that every time a mote contacts the basestation, we obtain a global anchor for that mote.

97

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

Table 5.1: Phoenix accuracy using the Olin dataset as a function of the number of days that
the basestation was unavailable.

Error\Days 2.4 6.8 10.12 14.16 18.

αmed (ppm) 1.73 1.73 1.85 1.70 1.96 2.20 4.36 5.47 5.93
αstd (ppm) 3.41 3.40 3.40 3.39 3.30 3.26 3.17 3.00 3.00

βmed (s) 0.88 0.88 0.91 0.94 1.16 1.55 4.52 6.02 6.44
βstd (s) 0.58 0.57 0.58 0.57 0.65 0.91 2.43 3.11 3.45

60 65 70 75 80 85 90

0.00

0.25

0.50

0.75

1.00

Persistent
BS down 18 days

P
ro

b
ab

ili
ty

Skew (PPM)

(a) The CDF of α estimates on the Olin de-
ployment

0 2 4 6 8 10 12 14 16 18

0

10

20

30

40

50

D
at

a
lo

ss
 (

%
)

Basestation down (days)

(b) Data loss using RGTR. Data loss from
Phoenix was < 0.06%.

Figure 5.7: The stability of the α estimates using Phoenix and the data loss using RGTR in
comparison to Phoenix.

Phoenix Accuracy: After simulating the basestation failure, we reconstruct the times-

tamps by applying Phoenix using only the 〈local, neighbor〉 anchors, and global anchors avail-

able from the G-mote. This provides us with another set of α and β estimates for each of the

segments. We compare these estimates with the ground truth estimates (pair-wise compari-

son). In order to provide a deeper insight, we decompose the average PPM error metric into

its constituent components - α and β errors. Furthermore, we report the median and stan-

dard deviation of these α and β errors. Table 5.1 reports the results of these experiments.

We found that the median α error stayed as low as 5.9 ppm, while the median β error stayed

as low as 6.4 s for N =18. In general, αmed, βmed and βstd increased as N increased and αstd

stayed relatively consistent for different values of N . The stability of the α estimates using

Phoenix with N = 0 and N = 18 is shown in Figure 5.7(a). The CDF shows that median skew

98

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

was found to be around 75 ppm and the two curves track each other closely.

Data Loss: The data loss using Phoenix was found to be as low as 0.055% when N was

18 days. In comparison, we found that there was significant data loss when the timestamps

were reconstructed using RGTR. Figure 5.7(b) shows the data losses for different values of

N . The figure does not report the Phoenix data loss as we found it to be 0.055% irrespective

of N . This demonstrates that Phoenix is able to reconstruct more than 99% of the data even

when motes reboot frequently and the basestation is unavailable for days. We note that in

comparison to Phoenix, RGTR does not incur any additional storage and duty cycle overheads

as anchors are recorded at the basestation directly as part of the data downloads.

5.4.5 Deployment - II

The second deployment (termed Brazil) was at the Nucleo Santa Virginia research station in

the Atlantic coastal rain forest near Sao Paolo, Brazil [11]. The goal of this deployment was

to collect data to improve atmospheric micro-front models. 52 nodes were deployed for a total

of 35 days and 5, 418, 074 data points were produced during this campaign. The site could not

host a persistent basestation. Instead, researchers would download data every alternate data

using a laptop that served as a temporary mobile basestation. The basestation was running

a linux VM over windows 7 - our download protocol required a linux installation.

Deployment Setup: Two GPS receivers were built on two motes and these were to serve

as the global clock source. These motes would advertise their local clock values for others to

anchor with and would also periodically store the (local,GPS) timestamps on their flash - this

is in addition to storing time state announcements from other motes. However, due to the

lithium battery shipping problems, these GPS motes were unavailable until 22 days into the

99

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

0

1

2

3

4

5

6
D

at
a

lo
ss

 d
ue

 to
 ti

m
es

ta
m

pi
ng

 (
%

)

41 46 31 20 59 67 47 58 40 28 22 34 25 42 29 65 68 56 8 44 35 45 52 6 7 21 26 27 24 9 12 13 14 17 18 19 43 48 49 50 51 36 37 30 32 33 57 60 61 62 63 64 69 66

Mote IDs −>

Figure 5.8: Data loss due to timestamping for the motes in the Brazil deployment

deployment. Due to these problems, we had to use the laptop’s VM clock as the global clock

source for the first 22 days. After the batteries arrived, we found out that one of the GPS

receivers did not work.

Experiences: When we looked at the temperature time series plots of the reconstructed

data for the first few days, we found a few motes “shifted” and “out-of-sync” from one another.

The peaks and troughs in the temperature seemed lagged at a few sensors. The motes ini-

tially started in-sync and then gradually went out of sync. This indicated to us that some of

the motes had poor estimates of α. On further investigation, we realized that the VM clock

was highly unstable and this lead to poor reconstruction.

Our only hope was to then rely on using the GPS anchors, available from day 22 to day 35

collected by the one working GPS mote. Even though we did not intend things to go this way,

this situation was exactly what phoenix was designed for - tolerance to a missing global clock

source for extended periods of time.

100

Chapter 5. Time Reconstruction II - Phoenix 5.4. Evaluation

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

GlobalTime Reference Point Residual [ms]

P
ro

ba
bi

lit
y

[0
 1

]

VM
GPS

Figure 5.9: Residuals of fits with global time references for the VM clock and the GPS.

Results: Using the GPS anchors, Phoenix was able to timestamp 99.7% of all the data that

was collected. The data loss due to timestamping for all the motes in the Brazil deployment

is shown in Figure 5.8. Other than mote 41 and 46, more than 70% of the motes have less

than 0.1% of timestamping data loss.

The accuracy of these timestamps is difficult to report since ground truth was not avail-

able to us. Nonetheless, we can compare the relative quality of the two global clock sources.

The CDF of the residuals for the fits obtained using the VM clock and the GPS clock is shown

in Figure 5.9. Note that low residuals indicate a good linear fit between mote clocks and the

reference clock. By looking at the distribution in Figure 5.9, the median residual for GPS is

almost two orders of magnitude lower than the VM clock. One can also notice the long tail

(high errors) in the distribution of the VM residuals. The effect of temperature on the mote

clock and non-deterministic delays in the GPS interrupt handling account for variation in the

GPS residuals. An obvious, but often overlooked, take away from this experience is to ensure

that the global clock source is trustworthy and accurate - just having one is not good enough.

101

Chapter 5. Time Reconstruction II - Phoenix 5.5. Related Work

5.5 Related Work

Assignment of timestamps in sensor networks falls under two broad categories. Strict clock

synchronization aims at ensuring that all the mote clocks are synchronized to the same clock

source. Flooding Time Synchronization Protocol (FTSP, [40]), Reference Broadcast Synchro-

nization (RBS, [22]), and the Timing-sync Protocol for Sensor Networks [25] are examples

of this approach. These systems are typically used in applications such as target tracking

and alarm detection which require strong real-time guarantees of reporting events. The sec-

ond category is known as postmortem time reconstruction and it is mostly used due to its

simplicity. While strict synchronization is appropriate for applications where there are spe-

cific events of interest that need to be reported, postmortem reconstruction is well-suited for

applications where there is a continuous data stream and every measurement requires an

accurate timestamp.

Phoenix falls under the second class of methods. The idea of using linear regression to

translate local timestamps to global timestamps was first introduced by Werner-Allen et al.

in a deployment that was aimed at studying active volcanoes [73]. This work, however, does

not consider the impact caused by rebooting motes and basestation failures from a time re-

construction perspective. More recently, researchers have proposed data-driven methods for

recovering temporal integrity [27, 36]. Lukac et al. use a model for microseism propagation

to time-correct the data collected by their seismic sensors. Although data-driven methods

have proved useful for recovering temporal integrity, they are not a solution for accurate

timestamping.

Routing integrated time synchronization protocol (RITS, [55]) spans these categories.

Each mote along the path (to the basestation) transforms the time of the reported event

from the preceding mote’s time frame, ending with an accurate global timestamp at the

102

Chapter 5. Time Reconstruction II - Phoenix 5.6. Conclusions

basestation. RITS does not consider the problem of mote reboots, and is designed for tar-

get tracking applications. The problem of mote reboots have been reported by a number of

research groups. Chang et al. report that nodes rebooted every other day due to an unstable

power source [13], whereas Dutta et al. employed the watchdog timer to reboot nodes due to

software faults [21]. Allen et al. report an average node uptime of 69% [73]. More recently,

Chen et al. advocate Neutron, a solution that detects system violations and recovers from

them without having to reboot the mote [14]. They advocate the notion of preserving “pre-

cious” states such as the time synchronization state. Nevertheless, Neutron cannot prevent

all mote reboots and therefore Phoenix is still necessary.

5.6 Conclusions

In this paper we investigate the challenges facing existing postmortem time reconstruction

methodologies due to basestation failures, frequent random mote reboots, and the absence of

on-board RTC sources. We present our time reconstruction experiences based on a year-long

deployment and motivate the need for robust time reconstruction architectures that minimize

data losses due to the challenges we experienced.

Phoenix is an offline time reconstruction algorithm that assigns timestamps to measure-

ments collected using each mote’s local clock. One or more motes have references to a global

time source. All motes broadcast their time-related state and periodically record the broad-

casts of their neighbors. If a few mote segments are able to map their local measurements to

the global time frame, this information can then be used to assign global timestamps to the

measurements collected by their neighbors and so on. This epidemic-like spread of global in-

formation makes Phoenix robust to random mote reboots and basestation failures. We found

that in practice there are more than enough possible ways to obtain good fits for the vast

majority of data segments.

103

Chapter 5. Time Reconstruction II - Phoenix 5.6. Conclusions

Results obtained from simulated datasets showed that Phoenix is able to timestamp more

than 99% of measurements with an accuracy up to 6 ppm in the presence of frequent random

mote reboots. It is able to maintain this performance even when there is no global clock

information available for months. The duty-cycle and space overheads were found to be as low

as 0.2% and 4% respectively. We validated these results using a 21 day-long real deployment

and were able to reconstruct timestamps in the order of seconds.

In the future, we will investigate using other metrics for determining edge weights and

their impact on the quality of the time reconstruction. Moreover, we will explore adaptive

techniques for determining the anchor collection frequency. Finally, we will derive theoretical

guarantees on the accuracy of Phoenix, which can be used to allow for fine-grained tradeoffs

between reconstruction quality and overhead.

104

Chapter 6

Exploiting Spatiotemporal Correlations

The theme of this chapter is mining the information within the sensor data to improve pro-

cesses in the data pipeline. We touched upon the amount of data generated by the LUYF

system in the Introduction (Figure 1.1). The overall goal is to understand some features in

the data and fold in this information to improve system components. Using correlations be-

tween sensor measurements to detect faulty readings is one such application. Understanding

the sources of heterogeneity in the data to optimize the data collection subsystem is another

application.

The rest of the chapter reads as follows. Section 6.1 provides an introduction to some

prominent features in the environmental datasets gathered by the LUYF project. We take

a closer look at these features in Section 6.2 and understand the subtleties associated with

soil temperature data obtained from the Cub Hill deployment. This case study provides a

platform for understanding how we robustly deal with data outliers (outlined in Section 6.3).

Section 6.4 explores the tradeoff between reducing fidelity and increasing network lifetime,

and finally, In Section 6.5, I present results of applying this adaptive data collection method

to the LUYF system.

105

Chapter 6. Exploiting Spatiotemporal Correlations 6.1. Features of LUYF Data

2008−07 2009−02 2009−08 2010−02 2010−08 2011−02 2011−09
0

5

10

15

20

25

S
oi

l T
em

pe
ra

tu
re

 [C
]

09−08−01 09−08−08 09−08−16 09−08−23 09−08−31

2008−07 2009−02 2009−08 2010−02 2010−08 2011−02 2011−09
0.15

0.2

0.25

0.3

0.35

S
oi

l M
oi

st
ur

e
[0

 1
]

09−08−01 09−08−08 09−08−16 09−08−23 09−08−31

Figure 6.1: The average soil temperature and soil moisture at the Cub Hill deployment for
the period between July 2008 to September 2011. The figure also shows the detail for the
month of August in 2009.

6.1 Features of LUYF Data

In order to understand various applications of spatiotemporal correlations, I wanted to begin

by giving a flavor of some properties and features that are observed in our datasets. Environ-

mental data can be sliced and diced along various dimensions. To name a few, data can be

characterized along time (temporal correlation), space (spatial correlation), between modali-

ties (cross correlation) etc. We begin by looking at some high-level features in the data and

106

Chapter 6. Exploiting Spatiotemporal Correlations 6.1. Features of LUYF Data

302

301

300

299

298

297
296

295 294
293

292
291

290

289 288
287

308

307

306

305

304
303

271

284
274

282
279283

280

281
278

272
273

277
276

275

270

265
264

263
262

286258
269

260
261

268
267

256

257
266

BS

0 30 6015 Meters Ü
Figure 6.2: The sampling locations for the Cub Hill deployment. TelosB nodes are placed
at each location and data related to soil conditions (temperature, humidity) are collected
every 10 minutes from each location. Note that this is an aerial view of the deployment site
captured during the winter (leaf cover is absent).

then drill down to some specifics.

Long-term Data Features : Soil Temperature (ST) and soil moisture (SM) data collected

over three years from Cub Hill is shown in Figure 6.1. Both modalities are strongly corre-

lated in time. Stated differently, measurements obtained at time t are strongly related to

measurements recorded at t−1, t−2, ... etc. ST data demonstrates strong annual and diurnal

components whereas SM demonstrates sharp spikes that are responses to rain events. One

also notes that ST and SM appear to be weakly correlated in a negative way. The presence of

the annual and diurnal patterns in the ST data are due to the changes in the solar cycle.

107

Chapter 6. Exploiting Spatiotemporal Correlations 6.1. Features of LUYF Data

07−07 07−10 07−13 07−16 07−19 07−22 07−25
16

18

20

22

24

26
S

oi
l T

em
pe

ra
tu

re
 [C

]

[258] − G
[261] − G
[302] − G
[271] − F
[283] − F
[292] − F
[300] − F

Figure 6.3: Compare and contrast soil temperature data collected from sensors located in the
forest (F) and in grass (G). Note: This data is from 2009. The year label has been omitted for
brevity.

05−15 05−18 05−21 05−24 05−27 05−30 06−03
12

14

16

18

20

22

24

26

28

S
oi

l T
em

pe
ra

tu
re

 [C
]

[256]
[258]
[260]
[269]
[303]

Figure 6.4: An illustration of faults in the soil temperature data. Data from location 269 is
faulty and sensor at location 260 measures faulty readings after a big rain event on 05-26.

Variability Between Locations : Environmental WSNs are deployed to capture the un-

derlying heterogeneity over time and space. The Cub Hill deployment, for example, is de-

ployed with a goal to understand the impact of land usage and cover on soil properties. Fig-

ure 6.2 shows the locations where soil probes are placed. Majority of the sensors are placed

in the forest. A small number of sensors are placed on grass patches and on the edge of the

forest (the forest-grass boundary). As one might expect, the data obtained from these sensors

108

Chapter 6. Exploiting Spatiotemporal Correlations 6.1. Features of LUYF Data

is strongly correlated. That said, a number of subtle differences can be observed that are of

interest to the scientists.

Two week’s worth of soil temperature data collected from a few forest and grass locations

is shown in Figure 6.3. The most striking feature of this data is that all the sensors demon-

strate the presence of the dominant diurnal cycle. One notes that the means of the sensor

values in the grass are higher than those located in the forest. One of the main reasons for

this is the lack of direct sunlight exposure in the summer months due to the presence of a

thick leaf cover on the trees. The sensors located in the forest exhibit a characteristic lag

with respect to ones located in the grass. The precise reason for this is beyond the scope of

this discussion - it is related to the inertia and the buffering effect of the forest soil.

Data Quality : There are two main challenges in dealing with the data collected using

environmental WSNs. The presence of missing values is the first one and the presence of

noise/faults in the sensor measurements is the second major challenge.

Missing values are caused by hardware and/or software failures. When nodes run out of

power or fail due to environmental factors, they stop logging data. These failures result in

missing values until the faulty nodes are replaced. The inability to assign timestamps to the

measurements is also a cause of missing values in the final processed dataset. An example of

faults in the data is shown in Figure 6.4. The soil temperature sensor at location 269 is faulty

for the most part (barring small periods of time when it appears to be working correctly).

Data gathered from the sensor located at location 260 is working correctly until May 26th. A

big rain event damages the sensor and causes it to fail. The sensor records a temperature of

27◦C immediately after the rain event and consistently records values that are significantly

higher than expected. Furthermore, the diurnal pattern is not exhibited by the sensor at

location 260 after May 26th. Such types of failures are frequently observed in our datasets.

109

Chapter 6. Exploiting Spatiotemporal Correlations 6.1. Features of LUYF Data

[2
64

] −
F

[2
65

] −
F

[2
71

] −
F

[2
72

] −
F

[2
73

] −
F

[2
74

] −
F

[2
75

] −
F

[2
76

] −
F

[2
77

] −
F

[2
78

] −
F

[2
79

] −
F

[2
80

] −
F

[2
81

] −
F

[2
82

] −
F

[2
83

] −
F

[2
84

] −
F

[2
87

] −
F

[2
88

] −
F

[2
89

] −
F

[2
90

] −
F

[2
91

] −
F

[2
92

] −
F

[2
93

] −
F

[2
94

] −
F

[2
95

] −
F

[2
96

] −
F

[2
97

] −
F

[2
98

] −
F

[2
99

] −
F

[3
00

] −
F

[2
57

] −
E

[2
62

] −
E

[2
63

] −
E

[2
67

] −
E

[2
68

] −
E

[2
69

] −
E

[3
07

] −
E

[3
08

] −
E

[2
56

] −
G

[2
58

] −
G

[2
61

] −
G

[2
66

] −
G

[3
02

] −
G

[3
03

] −
G

[3
04

] −
G

[3
05

] −
G

[3
06

] −
G

[264] −F
[265] −F
[271] −F
[272] −F
[273] −F
[274] −F
[275] −F
[276] −F
[277] −F
[278] −F
[279] −F
[280] −F
[281] −F
[282] −F
[283] −F
[284] −F
[287] −F
[288] −F
[289] −F
[290] −F
[291] −F
[292] −F
[293] −F
[294] −F
[295] −F
[296] −F
[297] −F
[298] −F
[299] −F
[300] −F
[257] −E
[262] −E
[263] −E
[267] −E
[268] −E
[269] −E
[307] −E
[308] −E
[256] −G
[258] −G
[261] −G
[266] −G
[302] −G
[303] −G
[304] −G
[305] −G
[306] −G 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.5: The correlation matrix for the soil temperature data from Cub Hill for a one
week (2009-5-28 and 2009-06-05) period in the summer. The labels on the axis represent the
locations. Forest locations are represented as “F”, grass as “G” and locations on the forest-
grass boundary as “E”.

6.1.1 Applications of Spatiotemporal Correlations

The strong correlations we have been talking about so far are demonstrated in Figure 6.5.

Data from one week is used to demonstrate the strong associations. These correlations can

leveraged to improve our system in the following ways:

• Data Preprocessing: Identify measurements that deviate from expected behavior.

• Data Collection: Engineer strategies to minimize the amount of data retrieved (com-

municated) by the network without considerable loss in fidelity (accuracy).

In the sections to come, we will take a closer look at each of these applications.

110

Chapter 6. Exploiting Spatiotemporal Correlations 6.2. Cub Hill Data Case Study

6.2 Cub Hill Data Case Study

In the previous section, I presented some high-level features observed in environmental

datasets. We also touched upon the spectrum of applications that can benefit from exploiting

these features and correlations. In this section, I want to go one level deeper and present

data obtained from our Cub Hill dataset. To be specific, I want to achieve two things. First,

to provide a higher resolution of the characteristics shown by typical LUYF datasets, and

second, to describe the methodology used to pre-process (clean) our datasets.

The Cub hill deployment consists of a network of 50 locations as shown in Figure 6.2. At

each sampling location, soil temperature and soil moisture probes are placed at depths of 10

cm and 20 cm. Data from these sensors is acquired every 10 minutes. Soil temperature data

gathered from Cub Hill for over ten months is shown in Figure 6.6. I would like to draw your

attention to the following aspects of this figure:

1. Prevalence of sensor faults and missing observations. The faults are represented by

sudden discrete transitions in the color map and the prominent faults are annotated.

2. Strong correlations among sensing locations represented by the similarity in colors

across various time snapshots.

The annotated faults shown in Figure 6.6 are caused due to low-quality packaging and

insulation from rain water. Researchers from other groups have also reported the prevalence

of faults in their soil monitoring networks [52,72].

6.2.1 Data Preprocessing Challenges

Before we start to look at the preprocessing details, let us understand some of the challenges

in cleaning up the data at a high level. The presence of missing observations means that the

111

Chapter 6. Exploiting Spatiotemporal Correlations 6.2. Cub Hill Data Case Study

Figure 6.6: Soil temperature dataset collected from Cub Hill. Figure illustrates the prevalence
of sensor faults and missing observations in the data. Time is represented by the Y-axis. Each
strip along the Y-axis represents data collected from a given location (labels on top). The
colored pixels represent the temperature at a given time for a given location. The locations
and land usage types are labelled on top. F is forest, E is edge of the forest and G is grass

fault detection method should be able to deal with gaps gracefully. From Figure 6.6, it is clear

that the sensor measurements are a function of time (data is non-stationary). The method

and its parameters should be designed keeping this aspect in mind. Finally, I would like

to highlight a very subtle point. Observe the faulty periods for some of the forest locations

- one can see that these measurements are comparable in magnitude to the measurements

collected in some of the grass locations. Thus, in order to identify whether a measurement is

faulty or not, the method also needs to consider its site characteristics.

112

Chapter 6. Exploiting Spatiotemporal Correlations 6.2. Cub Hill Data Case Study

Previous work in Fault Detection

Sharma et al. provide a nomenclature for sensor faults and explore methods for detecting

these faults [60]. They look at heuristic methods, least square regression and hidden Markov

models. The Cub Hill dataset contains faults that are best identified using spatial correla-

tions with site characteristics that are similar. In that regard, least square regression would

be suitable but the other methods would not as they are based on temporal correlation. Ni

et al. present a detailed study of the various types of faults observed in environmental data

collected using sensor networks [47].

Ramanathan et al. present, Suelo [52], a system that involves humans to validate, cali-

brate, and detect sensor faults. The system is initialized by letting humans annotate certain

faults. These annotations are used to learn the human’s actions and responses. Suelo extracts

features from the data collected from chemical sensors and uses an exponential weighted

moving average based Gaussian estimator to detect faults. While these features are appro-

priate for their dataset, these features are not observed in the Cub hill soil temperature

dataset.

Yao et al. study the problem of identifying anomalies in time series data by breaking

up the signal into piecewise linear models. This broken up time series is compared against

a reference time series using a distance metric. Periods that differ significantly from the

reference time series are considered to be anomalous.

Designing a fault detection mechanism depends strongly on the data. In general, it is hard

to provide one general recipe for all datasets. Our approach, presented in the next section,

is closest in spirit to work done by Yao et al. It also relies on the notion of constructing a

reference signal. We refer to this method as SMADS - a supervised median-based anomaly

detection method for spatiotemporal data.

113

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

6.3 SMADS

SMADS is a novel approach we have developed based on the features observed in the Cub

Hill dataset. The main steps in SMADS are outlined below:

1. Cluster Identification: Determine the number of clusters in the region being sensed.

Assign cluster membership to each sensing locations.

2. Label Data Per Cluster: Identify data points that are considered to be non-faulty

(clean). Tag adequate number of data points for each cluster.

3. Training Phase: Develop a robust model for each sensing location. Use the tagged

data to obtain a threshold for declaring a measurement faulty.

4. Prediction and Identification: Use the model to obtain a prediction and compare

it with the observed measurement. Use the threshold to decide if the measurement is

faulty.

In Section 6.3.4, we evaluate SMADS qualitatively. We also discuss its strengths, weak-

nesses and applicability in general.

6.3.1 Cluster Identification

It is clear from Figure 6.6 that data from similar sites (in terms of land usage) exhibit strong

similarities. Note that in Figure 6.6 data from forest locations are grouped and they are

placed on the left whereas data from grass locations are shown on the right .

This clustering effect is found to be based primarily on the location. We used domain

knowledge to assign cluster membership to the sensing locations. Each location was assigned

from one of three groups - forest (F), grass (G) or edge (E). We validated this assignment by

114

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

0

5

10

15

20

25

30

35

40

45

50
[2

83
] −

F
[2

96
] −

F
[2

62
] −

E
[2

57
] −

E
[2

80
] −

F
[2

98
] −

F
[3

07
] −

E
[2

64
] −

F
[3

00
] −

F
[3

08
] −

E
[2

68
] −

E
[2

69
] −

E
[2

76
] −

F
[2

84
] −

F
[2

95
] −

F
[2

63
] −

E
[2

65
] −

F
[2

67
] −

E
[2

88
] −

F
[2

77
] −

F
[2

99
] −

F
[2

91
] −

F
[2

70
] −

F
[2

87
] −

F
[2

71
] −

F
[2

72
] −

F
[2

97
] −

F
[2

75
] −

F
[2

79
] −

F
[2

82
] −

F
[2

92
] −

F
[2

78
] −

F
[2

90
] −

F
[2

94
] −

F
[2

93
] −

F
[2

73
] −

F
[2

81
] −

F
[2

89
] −

F
[2

74
] −

F
[2

56
] −

G
[3

04
] −

G
[2

58
] −

G
[2

66
] −

G
[2

61
] −

G
[3

01
] −

G
[2

60
] −

G
[3

02
] −

G
[3

05
] −

G
[3

03
] −

G
[3

06
] −

G

Eu
cl

id
ea

n
D

is
ta

nc
e

Figure 6.7: The dendrogram obtained using the Cub hill dataset. This plot was generated in
MatLab using the weighted distance option and the Euclidean distance metric. Cub hill data
obtained between March 2009 and May 2009 is used.

using half hourly data between 2009-3-15 and 2009-5-15 and running MatLab’s hierarchical

clustering (dendrogram) routine. This is a bottom up approach to clustering - each location

starts out as its own cluster. Subsequently, pairs of clusters are merged based on the similar-

ity of their data. The dendrogram (cluster merge tree) using the weighted average Euclidean

distance metric is shown in Figure 6.7.

115

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

6.3.2 Label Data Per Cluster

Being a supervised method, SMADS requires us to tag a small amount of the data for training

purposes. Tagging data requires a high amount of effort because an expert has to go through

the dataset and classify data points as faulty or non-faulty. SMADS tries to minimize the

amount of effort and time involved in the tagging process and this methodology is described

below.

For each cluster we present the data as a visualization to the expert. The expert then has

to annotate only the time periods (starts and ends) corresponding to data that he considers as

reasonable and not faulty. For instance, going back to the Cub hill dataset, the entire period

(from December 2008 to October 2009) for locations 272, 280 from the forest cluster are found

to be good. These locations are tagged as non-faulty. Similarly, data from locations 256, 266

from the grass cluster are tagged as non-faulty. Note that these tags are not the same as the

annotations shown in Figure 6.6. The annotations shown in the figure are just to illustrate

the prevalence of sensor faults. These tags of non-faulty data are used to bootstrap the fault

detection process and classify measurements from other locations. The intuition is that we

build a model for data that is considered to be non-faulty using these tags. Data points that

are “outlying” with respect to this model are classified as faulty.

6.3.3 Training Phase

The training phase consists of the following steps.

1. Compute a cluster specific median signal.

2. Develop a robust location specific model using data from each location and the median

signal.

116

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

3. Use the model and tagged data to obtain a cluster specific error distribution and deter-

mine a suitable threshold.

An untagged data point is classified using the model and threshold. I will describe the

details of the model building process next.

Representative Cluster Specific Signal

The cluster specific median signal for a given time t, and cluster c, is given by the following

equation

∀t ∈ T, c ∈ C : mt,c = MEDIANl∈c {ot,l} (6.1)

where T represents the set of all time instances for which data is available, C represents

the set of all clusters, l represents all locations within cluster c and ot,l represents the mea-

surement obtained at time t from location l. The timeseries given by mt,c represents the

median cluster-specific signal. Note that we could have used mean to represent this informa-

tion but we choose median because of its robustness to outliers.

Location Specific Model

We observe that measurements from each location are strongly correlated with its corre-

sponding cluster median value. Figures 6.8(a) and 6.8(b) demonstrate this correlation for a

forest location and a grass location respectively. One notes that this relationship is approxi-

mated well by a linear fit. Mathematically, this can be expressed as follows

ôt,l = al ∗mt,c + bl (6.2)

117

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

0 5 10 15 20 25

0

5

10

15

20

25

Median Temperature of Cluster [C]

S
oi

l T
em

pe
ra

tu
re

 2
72

 [C
]

data
robust fit : a =0.13, b =0.972

(a) forest location : no outliers

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

Median Temperature of Cluster [C]

S
oi

l T
em

pe
ra

tu
re

 2
56

 [C
]

data
robust fit : a =−0.14, b =0.992

(b) grass location : no outliers

0 5 10 15 20 25

0

5

10

15

20

25

Median Temperature of Cluster [C]

S
oi

l T
em

pe
ra

tu
re

 2
78

 [C
]

data
robust fit : a =1.04, b =0.930
outliers

(c) forest location : high outlier count

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

Median Temperature of Cluster [C]

S
oi

l T
em

pe
ra

tu
re

 2
60

 [C
]

data
robust fit : a =−0.10, b =1.005
outliers

(d) grass location : high outlier count

Figure 6.8: Figure shows the correlation between the data at different locations with the
cluster median. Figures 6.8(a) and 6.8(b) represent locations in forest and grass respectively
that have no outliers. Figures 6.8(c) and 6.8(d) show locations in forest and grass respectively
with a high count of outlying measurements.

where ôt,l represents an estimate of ot,l and [al bl] represents the location-specific param-

eters that need to be estimated.

Estimating parameters of the linear fit using the classic least-square [20] procedure will

result in poor estimates due to the presence of outliers. In order to obtain robust estimates

of the parameters, we follow the iteratively reweighted least-square methodology outlined by

118

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

Holland et al. [30]. The bisquare weighting scheme, described in [24] is used as the objective

function in the minimization formulation. It is worth pointing out that the classic least-

square procedure estimates parameters by minimizing the sum of squares of the residuals.

In the presence of outliers, this sum will be dominated by these extreme values, resulting in

a poor fit. The application of this approach to two forest and two grass locations is shown

in Figure 6.8. I would particularly like to draw attention to Figures 6.8(c) and 6.8(d). In

both examples, the procedure is able to achieve a good fit even though the data is strongly

contaminated by outlying data points. These outliers were validated by visually inspecting

the timeseries plots.

Estimation of Threshold Parameters

A threshold is used to determine whether a data point is to be considered faulty. This parame-

ter is estimated per cluster. The overall idea is to use the tagged data to obtain a distribution

for the residuals (deviation from the model predictions). This distribution is then used to

assess how outlying a new observation is. The residual, rt,l, for each data point is given by

ôt,l − ot,l; where ôt,l is given using Equation 6.2 , and ot,l is the value of the measurement at

time t and location l.

Recall that we have non-faulty tagged data available to us. The location specific models

are applied to these tagged data points and the residuals are recorded. Let Rc denote the set

of residuals for the tagged data belonging to a given cluster c. We look at the distribution of

these residuals and find that Rc follows a normal distribution. The location (mean, µc) and

scale (standard deviation, σc) of this distribution are estimated robustly [39]. The thought

behind estimating µc and σc is to transform the residual random variable Rc ∼ N(µc, σc),

into a variable that follows a standard normal distribution (∼ N(0, 1)).

119

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

Figure 6.9: The top panel shows the original dataset from 2009-5-14 to 2009-8-26. The middle
panel shows the dataset after applying SMADS to it. The red portions in bottom panel shows
the locations corresponding to the top panel that were detected as faults by SMADS.

Zc =
Rc − µc

σc
∼ N(0, 1) (6.3)

The values that result from applying this transformation are often referred to as Z-scores

120

Chapter 6. Exploiting Spatiotemporal Correlations 6.3. SMADS

in the literature.

Prediction and Identification

This subsection describes the process of using the model and thresholds to determine whether

a measurement is outlying. For each observation (ot,l), the residual, rt,l, is computed and then

converted to a z-score using Equation 6.3. We tag all Z-scores outside of [−4 4] as outliers.

This interval is highly subjective - it depends on the application and should be tuned for each

individual dataset. Note that, theoretically, more than 99% of the measurements of a N(0, 1)

random variable lie between −3 and 3.

6.3.4 Evaluation and Discussion

Cub hill data from 2009-5-14 to 2009-8-26 is used to evaluate SMADS. This period is cho-

sen for two reasons: (a) Largest variability for soil temperature is observed in the summer

months and this period contains a large number of faults; (b) This period is also used to

evaluate the adaptive data collection scheme discussed in Section 6.4.

The results of applying SMADS is shown in Figure 6.9. The top panel shows the original

data as a heat map. Measurements detected as faults are removed from the original dataset

and are shown as missing observations in the middle panel. The bottom panel shows the

locations of those measurements that were detected as faults by SMADS. Also, note that

outliers shown in Figures 6.8(c) and 6.8(d) are ones detected by SMADS.

The entire period shown in Figure 6.9 consisted of 250050 data points. SMADS detected

9566 of these as faults. It is difficult to evaluate SMADS quantitatively without having ac-

cess to tagged data. Although, this is a subject that can be explored in great detail, our main

objective here was to sanitize our datasets so as to minimize the impact of faulty measure-

121

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

ments.

SMADS leverages the spatial correlation among locations and is well suited for environ-

mental datasets that contain multiple sampling locations. SMADS computes the median over

all the available data within a cluster. The presence of missing values will tend to bias the

median computation, but as such, SMADS is able to deal with the presence of missing values

gracefully. A strong criticism of SMADS is that it does not make use of temporal correlation.

Therefore, it is not able to effectively deal with time periods that exhibit a transient dip in the

signal to noise ratio. Sharma et al refer to such measurements as noise faults [61]. 1 SMADS

can be augmented with another method that detects faults using features in the temporal

domain.

6.4 Adaptive Data Collection

Energy scarcity is a fundamental problem in long-term deployments. Postmortem times-

tamping methodologies outlined in Chapters 4 and 5 are examples of systems that trade off

accuracy for reduced communication, thereby resulting in power savings. Radio, the largest

consumer of power, is most heavily utilized in transferring the outstanding data from the

motes to the basestation. Earlier in this chapter, we looked at the prevalence of strong cor-

relations in the data. Using these correlations to reduce the amount of data that needs to be

transmitted provides opportunities to achieve power savings.

In this section, we will explore how we can reduce the amount of data retrieved by the

system to increase the network lifetime. Using compression schemes is one way to reduce

the amount of data that needs to be transferred [11]. In this thesis, a data-driven approach

is explored to reduce the amount of data that needs to be retrieved, and this approach would

work in conjunction with a compression scheme.
1Such type of faults are not commonly observed in the cub hill dataset.

122

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

At a high level, correlations in the data can be exploited to identify measurements that

capture and account for majority of the information (or variation). By selectively transmit-

ting these measurements and suppressing the remaining ones, the system can achieve a

balance between reducing communication costs at the expense of some tolerable loss in ac-

curacy. Intuitively, a higher number of transmitted measurements would result in increased

fidelity (lower loss). However, identifying which measurements need to be transmitted under

fluctuating environmental conditions presents a non-trivial challenge. In this section, we will

explore various methodologies to address this question and simultaneously study the amount

of data that needs to be transmitted to achieve a certain level of accuracy.

Before we dive into the details of collecting data adaptively, I’d like to begin by discussing

the motivation for studying this topic from the perspective of the LUYF system.

6.4.1 Introduction and Motivation

The LUYF sensor networks use a low-power data retrieval mechanism known as Koala [44].

An overview of the end-to-end system was described in Section 3.3. Recall that the data is

locally cached at the motes until the basestation retrieves all the outstanding data and note

that the typical sampling rate for the LUYF networks is 10 minutes.

The basestation does a bulk download to retrieve the outstanding data every 12 hours.

Motes turn off their radio in between these downloads in order to conserve power. It is

not surprising that the amount of time the motes need to keep their radios on is directly

proportional to the amount of outstanding data in the network. Stated another way, the

duration of time for which a mote need to keep their radio on using Koala is directly related to

the number of motes from which the outstanding data is being retrieved (more motes results

in more data being downloaded). Figure 6.10 demonstrates the linear relationship using

123

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

0

75

150

225

300

375

450

5 10 15 20 25 30 35 40 45
Nodes

D
ow

nl
oa

d
T

im
e

(s
)

5 10 15 20 25 30 35 40 45
0

25

50

75

100

125

150

Nodes

M
ed

ia
n

D
at

a
S

iz
e

(k
B

)

Figure 6.10: Radio usage during each download round. The top panel shows the total down-
load time as a function of the number of nodes during each download round. The bottom panel
shows the median data downloaded in each download round as a function of the number of
nodes.

actual download times for the Cub hill deployment. This simple observation motivates us to

explore the trade off between reducing the amount of data being retrieved by the basestation

and studying its impact on information loss.

124

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

11

12

13

14

15

16

17

18

19
Te

m
pe

ra
tu

re
 [C

]
Reconstruction obtained by picking 15 locations at random

[2
56

] −
G

[2
57

] −
E

[2
58

] −
G

[2
60

] −
G

[2
61

] −
G

[2
62

] −
E

[2
63

] −
E

[2
64

] −
F

[2
65

] −
F

[2
66

] −
G

[2
67

] −
E

[2
68

] −
E

[2
69

] −
E

[2
70

] −
F

[2
71

] −
F

[2
72

] −
F

[2
73

] −
F

[2
74

] −
F

[2
75

] −
F

[2
76

] −
F

[2
77

] −
F

[2
78

] −
F

[2
79

] −
F

[2
80

] −
F

[2
81

] −
F

[2
82

] −
F

[2
83

] −
F

[2
84

] −
F

[2
87

] −
F

[2
88

] −
F

[2
89

] −
F

[2
90

] −
F

[2
91

] −
F

[2
92

] −
F

[2
93

] −
F

[2
94

] −
F

[2
95

] −
F

[2
96

] −
F

[2
97

] −
F

[2
98

] −
F

[2
99

] −
F

[3
00

] −
F

[3
01

] −
G

[3
02

] −
G

[3
03

] −
G

[3
04

] −
G

[3
05

] −
G

[3
06

] −
G

[3
07

] −
E

[3
08

] −
E

Original
Gauss Reconstructed
Selection Set (Random)

16

17

18

19

20

21

22

23

24

25

26

27

Te
m

pe
ra

tu
re

 [C
]

Reconstruction obtained by picking 15 locations at random

[2
56

] −
G

[2
57

] −
E

[2
58

] −
G

[2
60

] −
G

[2
61

] −
G

[2
62

] −
E

[2
63

] −
E

[2
64

] −
F

[2
65

] −
F

[2
66

] −
G

[2
67

] −
E

[2
68

] −
E

[2
69

] −
E

[2
70

] −
F

[2
71

] −
F

[2
72

] −
F

[2
73

] −
F

[2
74

] −
F

[2
75

] −
F

[2
76

] −
F

[2
77

] −
F

[2
78

] −
F

[2
79

] −
F

[2
80

] −
F

[2
81

] −
F

[2
82

] −
F

[2
83

] −
F

[2
84

] −
F

[2
87

] −
F

[2
88

] −
F

[2
89

] −
F

[2
90

] −
F

[2
91

] −
F

[2
92

] −
F

[2
93

] −
F

[2
94

] −
F

[2
95

] −
F

[2
96

] −
F

[2
97

] −
F

[2
98

] −
F

[2
99

] −
F

[3
00

] −
F

[3
01

] −
G

[3
02

] −
G

[3
03

] −
G

[3
04

] −
G

[3
05

] −
G

[3
06

] −
G

[3
07

] −
E

[3
08

] −
E

Original
Gauss Reconstructed
Selection Set (Random)

Figure 6.11: The top panel shows the reconstruction of data for a snapshot of the Cub Hill data
using 15 randomly selected location. The bottom panel shows the same for another snapshot
- the prediction errors for this snapshot are comparatively higher.

Scientist’s perspective:

In many deployments, scientists analyse data months after the deployment has terminated.

That said, they are often interested in getting a high-level understanding of how the environ-

125

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

ment is varying in a real-time fashion. An effective selective data download system should

bridge this tension between the high cost of downloading all data versus reducing costs by

selectively downloading data and providing an effective approximation of the data.

In applications where real-time access is crucial, selective data downloading can be used

to design a try-before-buy system. The thought here is that not all periods are equally im-

portant. Some periods may be of higher interest to scientists (a rare event) in comparison to

others. The system could present the scientists with a good approximation of the data ini-

tially. If data for this time period is of high interest, measurements from all locations could

be retrieved. Such a system would work in applications where there is a big interest in a

small number of infrequently occurring events or time periods. For example, an agricultural

application designed to monitor the soil moisture conditions might be deployed to obtain the

spatial distribution of moisture after big rain events or thunderstorms. In between these

events, retrieving data from all locations may be too costly and unnecessary.

Motivating example for LUYF

To motivate this area of research further, consider a snapshot of soil temperature data col-

lected on 2009-5-17 from all active sensors at Cub hill shown in the top panel of Figure 6.11.

The blue series with bubbles shows the original data collected by the sensing locations. The

figure also shows 15 locations that are selected at random (shown as solid circles) and a pre-

diction (green series with diamonds) at other locations using these 15 locations. It is clear

that the data corresponding to this time snapshot is highly predictable and hence collecting

data from all locations is overkill. On the other hand, consider the reconstruction obtained

for another snapshot (2009-7-19) of data shown in Figure 6.11 (bottom panel) where the pre-

dictions are not very accurate. The predicted data at location 260 is 3◦C higher than the

actual temperature and predictions at locations 287 and 302 are off by as much as 2◦C. This

126

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

exercise serves as a motivating example for selectively collecting data from informative loca-

tions and adaptively varying the parameters of the data collection scheme to ensure fidelity

is maintained.

The topic of adaptive data collection has been studied by a number of researchers. It is

impossible to discuss the entire literature but I will discuss some of the major bodies of work

in this area and compare and contrast how these systems differ from our system.

6.4.2 Literature Survey

The problem of model-driven data collection in sensor networks was introduced by Desh-

pande et al. [18]. Their system, referred to as BBQ, is motivated by work done in the ap-

proximate query processing database community. The BBQ system accepts a query q and

an error tolerance δ. The system models the sensor data (including different sensor types)

as a time-varying multivariate Gaussian. Based on δ, the system decides whether the query

can be answered using the present model. If this cannot be achieved, its constructs a plan to

collect additional samples such that acquisition costs are minimized. BBQ presents a clean

way to predict unavailable measurements given the available measurements and their un-

certainties. The focus of this system is to reduce acquisition costs to address user queries.

This differs from our system goals as the LUYF scientists require all the data to be made

available to them at the end of the deployment. Therefore, we cannot save on acquisition

costs. In contrast, the goal of our work is to suppress transmission for measurements that

can be easily predicted using other measurements in an adaptive fashion.

PRESTO introduces a two tier architecture for data storage and management [35]. The

system contain a small fraction of proxy nodes that are rich in computation, communication

and storage resources. These proxy nodes build a seasonal autoregressive integrated moving

127

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

average (SARIMA, [8]) model based on historical data and push these model-parameters to

the sensing nodes. These sensing nodes report an actual sensed value to the proxies only

when the measurement lies outside the confidence interval as given by the model. Since the

proxy also has knowledge of the model, if a value is not reported by a node, the proxy stores

the model prediction as an approximation to the observed value. This work is close in spirit

and flavor to our goal. However, the most significant difference is that SARIMA does not

capture spatial correlation. As a consequence, each node in PRESTO acts autonomously.

Lance [74] addresses how a system can maximize the overall value of the collected data

subject to communication constraints. The design splits up the collected data in units known

as application data units (ADU). By scaling the value of each ADU with its cost, an effective

value is computed and this value is leveraged to download data using a greedy knapsack ap-

proach. This work focusses on system design and policies for networks with a high frequency

of sampling. As such they assume that the value of each ADU is a well-defined entity for

each application and hence do not provide a general statistical recipe for using spatiotempo-

ral correlation to download data adaptively.

Krause et al. explore the topic of optimal placement of sensors by maximising the mutual

information between selected locations and locations which are not chosen [33]. The general

problem of optimal placement of sensors is a known NP-complete problem. This work ex-

plores various strategies to address this general problem and they derive a polynomial time

approximation for the mutual information based approach that is within (1 − 1/e) of the op-

timal configuration. The goal of our work is to find optimal sensor locations from a subset of

already placed locations in an adaptive and online fashion. We make use of the results ob-

tained by Krause at al. to identify these subset of informative sensors. We evaluate various

strategies to study the trade off between reconstruction error and reduced communication in

the context of the LUYF system.

128

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

6.4.3 Finding Informative Locations

Consider that a sensor network consisting of d discrete locations has been deployed. As ob-

served in the Cub hill dataset, there is considerable spatial correlation among these locations.

Figure 6.11 further demonstrates the ability to perform accurate prediction at unobserved lo-

cations using a subset of observed measurements. The basic idea behind finding informative

locations is to determine a small subset k (out of d) of locations that provide good predictions

at the other (d− k) locations.

Krause et al. leverage mutual information to determine these informative locations [33].

Let U : |U | = d represent a set of all locations and S : |S| = k represent the set of selected loca-

tions. The underlying variable being sensed, xU ∈ RN , is assumed to belong to a multivariate

gaussian distribution. The members of S can be obtained by maximising the mutual infor-

mation given by I(xS ; xU\S). Following Krause et al., this can be mathematically represented

as follows:

S∗ = argmax
S∈U :|S|=k

H(xU\S)−H(xU\S |xS) (6.4)

where H(xU) represents entropy of the random variable XU and \ represents the set dif-

ference operator. The exact solution to Equation 6.4 is NP-Complete. However, [33] describes

an approximate greedy solution by adding sensors that provide maximum increase in the mu-

tual information. The details of this greedy, computationally efficient solver [3] are beyond

the scope of this thesis, but the reader should refer to [33] for more details. In our application,

we utilize these results and apply them in the context of the LUYF system.

129

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

6.4.4 Data Reconstruction Methodologies

In the previous section, we looked at a mutual information based approach to choose a subset

of informative locations. Data gathered from these locations are used to predict (or recon-

struct) values at locations for which measurements are unavailable. The prediction error

provides the system feedback regarding the quality of the selected locations and their ability

to capture spatial heterogeneity. For example, in an agricultural application, an irrigation

administrator might want to set up an alert whenever the predicted soil moisture goes above

a certain value. Here it will be important to predict values accurately. Once the predicate con-

ditions are met, the system can then monitor the environment in more detail by downloading

data from all locations that match the predicate (instead of a small subset).

Therefore, we require a methodology to reconstruct data at locations for which measure-

ments are unavailable. In the LUYF project, this reconstruction is meant to serve two pur-

poses

1. To evaluate the effectiveness of the spatial heterogeneity captured by the subset of se-

lected locations.

2. To predict values at unavailable locations for data visualizations, spatial interpolation

etc.

Two methods of reconstruction were explored. The first one is based on Principal Com-

ponent Analysis (PCA, [20]). The second is a well known interpolation scheme for Gaussian

processes [54].

PCA Reconstruction

PCA is a well known dimensionality reduction and multivariate analysis technique. I will

begin by introducing the main concepts of PCA and proceed to explain how we can use this

130

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

method to reconstruct partial vectors.

This method is well-suited for multivariate data in which the individual variables exhibit

high correlation. The goal of PCA is to find a small number of uncorrelated directions that

capture majority of the variation. Essentially, these directions are translations and rotations

of the original directions such that each variable is now represented as a linear combination

of these principal directions.

Let [x1, x2, ..., xn] represent a set of points belonging to Rd. Furthermore, let x ∈ Rd repre-

sent the multivariate random variable. The goal of PCA is to find directions, u ∈ Rp : p < d,

given by the objective function

u∗ = argmax
u:uTu=I

VAR(uTx) (6.5)

where VAR represents the variance operator. The first p principal components of the mul-

tivariate random variable x are given by the p leading eigenvectors (ordered by decreasing

eigenvalues) of the covariance matrix (E[xxT]) [20]. For highly correlated data, a very small

number of components are able to effectively capture the variation in the data. Stated an-

other way, p� d.

Obtaining the principal components allows us to represent the original vectors in terms

of the new directions.

x1 = α11u1 + α12u2 + ...α1pup

x2 = α21u1 + α22u2 + ...α2pup

...

xn = αn1u1 + αn2u2 + ...αnpup (6.6)

131

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

This can be concisely represented as

xi =
p∑
j=1

ujαij (6.7)

where [αi1, ..., αip] represent the coordinates of xi in terms of the new directions. These coor-

dinates are also referred to as eigencoefficients.

Now, let us consider another vector x′ ∈ Rd that is drawn from x and lets suppose that x′

contains some missing entries. We can define a mask vector, w ∈ Rd, indexed by q, such that

wq = 0 if x′q is missing, and wq = 1 if x′q is present. Note that q : q ∈ [1, d] is used to represent

indices into the entries of w and x′. The basis vectors (u1, u2, ..., up) and the projections on

these vectors (α′1, ...α′p) are indexed by j : j ∈ [1, p]. Using these definitions, we can define an

objective function as follows:

d∑
q=1

wq(x′q −
p∑
j=1

uqjα
′
j)

2 (6.8)

This function can be minimized to solve for each α′j and these α′s can be used to recover x′

using Equation 6.7. The main intuition here is to find α′s that are able to best characterize

the data that is available to us. The strong correlation in the data enables us use these α′s to

estimate the observations that were masked out. Following Connolly et al. [2], the solution

can be written as

α′j =
p∑
k=1

t−1
jk zk (6.9)

where tjk =
∑d
q=1 uqjwquqk and zk =

∑d
q=1 ukqwqx

′
q. It is worth mentioning that t is pro-

portional to the covariance between the eigencoefficients. If x′ did not contain any gaps (no

masked region), t would be unity. In practice, we employ a robust and streaming approach

for finding the directions of variance. This is done because noisy measurements can severely

132

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

impact the quality of the reconstruction. Interested readers should refer to [9] for the math-

ematical aspects of the robust and streaming PCA.

Gaussian Method of Reconstruction

A multivariate Gaussian random variable is a simple and effective way to model data from

all instrumented locations. This methodology has been extensively employed in the sensor

network community [18, 33]. We will discuss how this model allows us to utilize observed

data to predict data at all locations where no observations are available.

Let x ∈ Rd be a multivariate Gaussian random variable ∼ N(µx,Σxx) representing data

from all instrumented locations. Let S represent the set of size k - locations for which mea-

surements are available, and let s ∈ Rk be the multivariate random variable representing

data from all observed locations. S partitions the original set into two parts - locations that

belong to S and locations that do not. Let r ∈ Rd−k represent the variable representing data

from all locations that are not in S.

The original mean and covariance matrix of x can be written as

µx =

 µs

µr

 (6.10)

Σxx =

 Σss Σsr

Σrs Σrr

 (6.11)

(6.12)

We are interested in obtaining a posterior distribution after observing data from S. Note

that conditioning a Gaussian variable on some attributes results in another Gaussian random

variable. Therefore, r, is also Gaussian. Its mean and covariance matrix can be written as:

133

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

Deployment	
 Ini-alize	
 Model	

Find	
 Informa-ve	

Loca-ons	

Selec-ve	

Data	
 Download	

Data	
 	

Reconstruc-on	

Working	
 Set	

Evalua-on	

Network	

Download	

[1]	
 [2]	

[3]	

[7]	
 [6]	

[5]	
 [4]	

Figure 6.12: Various components in the adaptive data framework

µr = µr + ΣrsΣ−1
ss (s− µs)

Σrr = Σrr − ΣrsΣ−1
ss Σsr (6.13)

where s represents the observation vector. Please note that the s (bold) is used to represent

the variable and s (plain) is used to represent the observations. It is worth noting that, in

addition to obtaining estimates at unobserved locations, this method also provides us the

uncertainties in the prediction. For a more complete treatment on Gaussian Processes, please

refer to [54].

6.4.5 Overall System Design

In this section, I’d like to present an overview of the relationships between the various adap-

tive data collection components in the context of the LUYF system. A schematic is shown

in Figure 6.12. We will also take a look at how this scheme works in conjunction with the

134

Chapter 6. Exploiting Spatiotemporal Correlations 6.4. Adaptive Data Collection

existing networking infrastructure.

I’ll begin by defining some terms that will be used in the remainder of the chapter. Work-

ing set is defined as the set of size k that comprises of the most informative locations. Train-

ing period is the duration during which the system downloads data from all instrumented

locations. This data is used to (a) obtain the working set ; and (b) update the model(s) for

predicting values at all locations that are not in the working set. The test period is the time

for which the system selectively downloads data from the working set and suppresses data

downloads from locations that are not in the working set. An update or snapshot (used in-

terchangeably) refers to a single vector of observations from all instrumented locations. In

contrast, the training period consists of many such vectors - all corresponding to different

instances of time.

The model initialization component (Step 2 in Figure 6.12) is responsible for gathering

data for a small amount of time to initialize the PCA basis and to determine the initial set

of informative locations. For the Cub Hill dataset, collecting two days worth of data from

all instrumented locations was found to produce reasonably good results (Section 6.5). Using

data downloaded from all instrumented locations, the working set is computed using the

methodology described in Section 6.4.3. Data from these S (using the nomenclature used

earlier) locations are downloaded for a period of time given by the test period. From a LUYF

system perspective, the Koala download protocol will selectively retrieve data from nodes at

these S locations instead of downloading data from all the nodes. It is crucial to note that

this reduction in data gathering is what leads to power savings. Recall that data is collected

at each mote at a fixed frequency and is cached locally too making it available for download

at a later point in time.

Reconstruction methodologies are used to predict values at locations for which data was

not retrieved (Step 7 in Figure 6.12). At this point, the logical next step is to evaluate the

135

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

quality of the prediction. Naturally, periodic snapshots of data from all the locations are

required to evaluate the efficacy of the model predictions. The journal records (Section 3.2)

present us with an opportunity to receive these snapshots piggybacked with mote health

information. Because journal records are small in size (∼ 100 bytes) this is a light-weight

mechanism for the system to achieve feedback. This work evaluates a few different strategies

to take this update information and devise mechanisms to update the model, working set and

test period. We will take a closer look at these strategies in Section 6.5. These data-driven

strategies determine the amount and frequency with which data needs to be retrieved from

the network.

This cycle of performing a full network download, establishing a working set, selectively

downloading data and evaluation of the model prediction runs in a loop.

6.5 Adaptive Data Collection Evaluation

In this section, we evaluate the application of the mutual-information based adaptive data

collection scheme on the Cub hill dataset (Section 6.2). Data from 2009-5-13 to 2009-8-26

is used for evaluation purposes. The period is chosen because the summer months exhibit

larger variability compared to the winter months. We explore the following questions:

• Compare the effectiveness of the mutual information based selection with selecting lo-

cations at random.

• Study the impact of number of locations on prediction error.

• Study of impact of changing the test period to understand its effect on prediction error.

• Evaluate three download strategies - Periodic (P), Largest-errors-first (LEF), Event-

driven (ED).

136

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

6.5.1 Evaluation Metrics

The system is evaluated using two metrics

• Absolute prediction error : The absolute difference between the actual value and the

prediction. The median and 95th percentile values are used to report aggregates.

• Data download fraction: The fraction of data downloaded. This is a measure of the

power consumption as it capture the amount of work that needs to be done by the radio

in transferring data.

The default configurations are as follows:

• Train data period : two days.

• Test data period : 14 days.

• Number of locations for selective data download : 10 (out of 50).

• Reconstruction Method : PCA. Whenever the Gaussian reconstruction method is used,

it will be specified.

Compare with Random Selection

The main idea behind this experiment is to evaluate the effectiveness of finding informa-

tive locations using mutual information in comparison to the baseline approach of selecting

locations at random. We report the prediction error for locations that were not selected.

The median prediction error as a function of the working set size is shown in Figure 6.13.

Clearly, errors using mutual information are lower in comparison to the random selection

of the working set. This gap is bigger when the size of the working set is small. As the

working set increases this gap narrows. This is due to the fact that mutual information is

137

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

4 6 8 10 12 14 16 18 20
0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

Locations [1 50]

A
bs

ol
ut

e
M

ed
ia

n
E

rr
or

 [C
el

ci
us

]

MI
random

Figure 6.13: Reconstruction errors obtained when selecting locations randomly and using
mutual information.

Table 6.1: Download fraction and reconstruction errors as a function of the working set.

Locations Download
Fraction

PCA-
Median

PCA-95th Gauss-
Median

Gauss-
95th

4 0.255 0.320 3.954 0.173 1.276
6 0.288 0.268 1.197 0.167 1.118
8 0.323 0.234 0.986 0.161 1.051
10 0.357 0.223 0.952 0.167 0.998
12 0.392 0.214 0.929 0.154 0.994
15 0.443 0.204 0.922 0.170 0.985
20 0.517 0.202 0.892 0.164 0.979
25 0.579 0.194 0.876 0.170 1.019

not monotonic. In fact, there is a point beyond which mutual information goes down as the

number of selected locations increase. It was found that beyond 25 (out of 50) locations, the

mutual information was no longer monotonic.

Impact of Working Set Size

The median and 95th percentile reconstruction errors using PCA and Gaussian reconstruc-

tion are shown in Table 6.1. The table also shows the fraction of data that was required to

138

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Error [C]

P
ro

ba
bi

lit
y

[0
 1

]

TEST PERIOD:60days
TEST PERIOD:30days
TEST PERIOD:15days
TEST PERIOD:5days
TEST PERIOD:2days
0.95 probability

Figure 6.14: The impact of increasing the test period on reconstruction error.

be downloaded as a function of the working set size. For the PCA reconstruction method, one

can see the diminishing returns property of adding more locations to the working set. The

drop in median error is sharp when the number of locations are small and it flattens out as

the size of the working set increases. We also see that beyond 12 locations the median error

does not change significantly. This scheme of having a fixed train period and test period is

referred to as the periodic methodology. This method serves as the baseline for comparing

and evaluating other adaptive downloading strategies.

It is interesting to note that the median prediction error using the Gaussian method is

lower than obtained using the PCA method. However, the roles are reversed when we com-

pare the 95th percentile error.

139

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

Table 6.2: Download fraction and reconstruction errors for the LLE data retrieval scheme.

δ (◦ C) PCA
Down-
load
Fraction

PCA-
Median

PCA-95th Gauss
Down-
load
Fraction

Gauss-
Median

Gauss-
95th

1.25 0.440 0.181 0.679 0.414 0.083 0.463
1.00 0.490 0.161 0.588 0.429 0.077 0.424
0.75 0.547 0.151 0.553 0.465 0.070 0.367
0.50 0.681 0.122 0.476 0.524 0.063 0.324
0.25 0.878 0.100 0.431 0.724 0.044 0.253

Impact of Test Period

The test period is given by the frequency with which the working set is recomputed. Figure

6.14 shows the results of varying the test period. Note that the train period is fixed at two

days for each test period shown in Figure 6.14.

As the test period increases, the prediction error increases. If we compare the median

errors for Figure 6.14 and Figure 6.13, one observes that the prediction errors appear to be

influenced more significantly to changes in the test period compared to the size of the working

set.

Additionally, the timeseries of the prediction errors shows some distinct patterns. The

working set and reconstruction model are not able to perform a good prediction after big rain

events. When the test period is low, the system gets an opportunity to update the working

set and reconstruction model more frequently - minimizing the impact of rain events. Figure

6.15 shows the daily 95th percentile error and the soil moisture conditions for test period of 5

days. The sharp spikes in soil moisture correspond to rain events. Note that the spikes in soil

moisture align with the high prediction error spikes. Another observation is that the period

between 06/20 and 07/20 shows lower errors. This is also the period that corresponds to least

rain.

140

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

05/16 05/26 06/05 06/15 06/25 07/05 07/15 07/26 08/05 08/15 08/25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
A

bs
ol

ut
e

E
rr

or
 [C

]

95th percentile error
Train times

05/16/ 05/26/ 06/05/ 06/15/ 06/25/ 07/06/ 07/16/ 07/26/ 08/05/ 08/15/ 08/26/
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

S
oi

l M
oi

st
ur

e
[0

 1
]

Figure 6.15: Prediction error as a function of time and rain events for test period of 5 days

6.5.2 Adaptive Data Collection Strategies

Periodic

The periodic methodology was discussed earlier when we looked at the impact of the working

set size. The numbers presented in Table 6.1 serve as the baseline and our goal is to improve

on them.

141

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

Largest Errors First (LEF) Retrieval

In this scheme, the journal records are used to receive data updates from all locations. The

journal records are retrieved every 12 hours. The measurement updates are piggybacked

along with these journal records. six measurements - one measurement randomly selected

every 2 hours is part of the update packet. These complete vectors are used to update the

PCA basis, the mean vector and covariance matrix. Thus these update records serve two

purposes:

• Evaluate the effectiveness of the predictions.

• Update the PCA/Gaussian reconstruction model parameters.

The user or administrator specifies a tolerable prediction error δ and the amount of toler-

ance, ε (e.g. 95%) - fraction of errors below δ that are acceptable. Using these journal records,

we evaluate the prediction error and compute the percentage of errors that are above δ for

each location. If this fraction is higher than ε then that particular location is marked. During

the next data download round, data from all marked locations are downloaded in addition

to the locations in the working set. These marked location increase the effective size of the

working set. Note that a location that was previously marked can also be unmarked during

the test period if the fraction of errors above δ falls below ε.

There are two main intuitions for adopting this approach. First, we observe that there are

a small set of locations (five or less) that consistently suffer from high prediction errors. The

most likely explanation for this is that the variation in these locations may not be effectively

captured by the working set. Downloading data from these locations separately would result

in significantly lowering the errors. The second intuition follows from the fact that the pre-

diction error increases as the test period increases. The model is unable to keep up with the

changing environment. Frequent snapshots serve to alleviate this problem.

142

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

For the evaluation, the minimum number of locations to start off with at the beginning of

each test period was set to five. The train period is set to two days and the test period is set to

14 days. The total number of locations part of each test data download fluctuated - depending

on the number of marked nodes. ε was set at 95% and δ was varied. The results are tabulated

in Table 6.2.

A somewhat surprising result is that the Gauss median and 95th percentile errors are

significantly lower compared to the reconstruction obtained using PCA. In Table 6.1 we found

the Gauss-95th percentile error to be higher than the PCA-95th error. The intuition for this

result is as follows. We observed that the Gauss method suffered from high prediction errors

at a few locations but had low prediction errors in expectation. Using the LEF scheme,

the locations with these high errors are downloaded so their impact is offset, resulting in

significantly lower errors.

Comparing these results with the results shown in Table 6.1, we note that this scheme

produces significantly lower errors for the same amount of downloaded data. For example,

downloading 44.3% of the data using periodic downloads resulted in a median error of 0.17 and

a 95th percentile error of 0.98 whereas in the LEF downloading scheme, for a lower download

fraction (42.9%), the median error was found to be 0.07 and the 95th percentile error was found

to be 0.424, which is significantly lower.

Event-driven Data Retrieval

The quality of the model predictions and effectiveness of the working set are significantly

impacted by the arrival of rain events as shown in Figure 6.15. The idea of the event-driven

data retrieval is as follows. An event detection algorithm is used to detect the onset of events

(in this case, rain events). If the system does not detect an event until the next scheduled

network download, it defaults to the LEF retrieval scheme. If an event is detected, the sys-

143

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

05/16 05/26 06/05 06/15 06/25 07/05 07/15 07/26 08/05 08/15 08/25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
A

bs
ol

ut
e

E
rr

or
 [C

]

95th percentile error
Train times

05/16/ 05/26/ 06/05/ 06/15/ 06/25/ 07/06/ 07/16/ 07/26/ 08/05/ 08/15/ 08/26/
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

S
oi

l M
oi

st
ur

e
[0

 1
]

Figure 6.16: Daily 95th percentile errors for event driven data downloads. Compare these
errors with 6.15 and notice the low errors after rain events.

tem performs a complete network download for a 12 hour period following the event and

recomputes the working set. The main intuition for doing this is that the rain events serve

as change points and the model needs to be updated to reduce the prediction error. The dif-

ferential flow of water has an impact in the way temperature varies at different sampling

locations. This changes the way in which locations are correlated and these association needs

to be reevaluated.

144

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

The daily 95th percentile errors using the event driven retrieval methodology is shown in

Figure 6.16. One notes that these errors are significantly lower compared to Figure 6.15 and

the errors are not strongly influenced by rain events.

A very basic rain detection scheme is used for this dataset. The idea is that the sys-

tem looks at successive soil moisture measurements and declares a rain event whenever the

difference is above 0.2 units. The soil moisture signal is smoothed using a median filter to

minimize the effect of outliers and false positives. Using the Gaussian method of reconstruc-

tion, the median absolute error was 0.06◦C , the 95th percentile absolute error was 0.3◦C and

the fraction of data that needed to be downloaded was 56%. The improvement compared to

the adaptive LEF scheme is only marginal. However, I argue that this is a more principled

away of performing downloads because of the value of the data being downloaded. Captur-

ing data during these events is what many environmental monitoring sensor networks are

deployed for.

6.5.3 Energy Savings

I’d like to end this section with a note on the potential energy savings achieved by performing

adaptive data downloads. The relationship between the amount of data downloaded and

the time required to keep the radio on is shown in Figure 6.10. The desired accuracy of

reconstruction determines how much data needs to be downloaded and this relationship is

shown in Figure 6.17. When 50% of the data is downloaded, the median accuracy of 0.06◦C

and the 95th percentile error is 0.0325 using the Gaussian method of reconstruction.

At the time of writing this dissertation, the Koala download protocol suffers from a lot

of overheads associated with waking up the network, setting up connections, downloading

link information etc. A considerable amount of time is spend in packet retransmissions too.

145

Chapter 6. Exploiting Spatiotemporal Correlations 6.5. Adaptive Data Collection Evaluation

40 45 50 55 60 65 70 75 80 85
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Percentage data downloaded [%]

A
bs

ol
ut

e
95

th
 p

er
ce

nt
ile

 e
rr

or
 [C

el
ci

us
]

Figure 6.17: Trade-off between reconstruction error and the percentage of data downloaded
by the network. The LEF download strategy is used in this figure.

This time is comparable to the amount of time spent in performing data downloads. The duty

cycle, at Cub Hill, has been found to be around 2.5%− 3%. This translates to the radios being

used for around 1080 seconds in a 12 hour period. Using numbers obtained in Figure 6.10

and assuming these overhead remains constant, the total amount of time the radio would be

kept on works out to 855 seconds in a 12 hour period. This is a 20.8% reduction in the amount

of time each motes’ radio is kept on.

Koala wakes up the entire network and this analysis is very specific to Koala. A download

protocol that does not require to wake up the whole network will result in significantly more

energy savings.

146

Chapter 7

Conclusion

In this chapter, I would like to express some closing thoughts on this journey. Specifically, I

would like to discuss some interesting lessons learned while on the road, and my opinions on

directions that would be interesting for someone addressing similar challenges.

A lot of effort and experience went into the design and maintenance of the two phase

data pipeline. However, after over five years of deployment experiences we are still learning

and finding ways to improve the system. The collection of metadata information always posed

problems. There have been significant delays in updating the metadata tables (location, node,

sensor etc.) during the initial stages of deployment and when replacing malfunctioning hard-

ware during the deployment. These delays have often resulted in inconsistencies in the data

and difficulties in our ability to trace back the origins of individual measurements. As I have

stressed in Chapter 3, designing a system that detects changes in hardware configurations

and auto updates the metadata tables would alleviate a lot of these inconsistencies.

Tight coupling of the upload application with the underlying stage database and Koala

packet structure resulted in a lot of frustration. Every time the underlying stage database

schema changed or the Koala packet structure changed, the upload application would break

and require an update. To begin with, data transferred from the basestation to the data store

should be free from the underlying download protocol packet structure. The basestation could

147

Chapter 7. Conclusion

use a utility like ’rsync’ to upload the outstanding data (or files) to the data store. If a self-

describing format is used to describe the records sent by the basestation, a light-weight parser

could periodically run through a list of new files and insert the records into the database. This

methodology also clearly demarcates the role of the basestation and database server.

Postmortem assignment of timestamps was a fun and challenging problem to work on.

Phoenix alleviated a lot of challenges related to random mote reboots and missing global

clock sources. By looking at the fit residuals, we had a good way of estimating the accuracy of

the skew (α) for a given fit. This metric did not enable us to detect poor estimates of the offset

(β). During the Brazil deployment, we encountered that a few motes were advertising a local

clock value that was consistently off, whilst maintaining the local clock correctly for its own

operation. Whichever segments used these incorrect clock values to obtain a fit suffered from

having fits where the β were off by a huge margin. Since each segment could potentially help

other segments obtain a clock fit, it resulted in cascading failures. This error was detected

when the timestamp assignments were validated by looking at actual timeseries plots. Some

signals were consistently out-of-sync with others. In practice, there are a large number of

ways of estimating the fit parameters. Each independent path to a node that carries the

global clock source provides us with an estimate. We can use this redundancy and employ a

voting/collaborative approach to eliminate poor estimates of offsets.

The timestamp assignment problem is a highly focused and specific problem. In contrast,

the data-driven adaptive data collection proved to be a subjective and open ended problem.

There are many avenues to explore further in this topic. The current system does not consider

the amount of work each node needs to do in order to send packets to the basestation. Nodes

closer to the basestation do less work and take less time to send data to the basestation

compared to those that are multiple hops away. In finding the subset of informative locations,

the hop count of the node should be a factor in deciding the importance of the sampling

148

Chapter 7. Conclusion

location.

In many environmental monitoring applications, more than one variable may be of inter-

est to the scientists. Researchers may want to study the variation and distribution of two

variables (Soil CO2 and soil moisture, say) jointly. Adaptively downloading data to match

this joint criterion has not been explored in this thesis.

To summarize, this thesis explores challenges related to loading, storing and ensuring the

integrity of the data retrieved from typical environmental WSNs. The unique and interesting

problem of postmortem timestamp assignment is tackled in depth - both in simulation and

in real deployments. Finally, a data-driven approach leveraging the spatial correlation is

presented and trade-offs between fidelity and network lifetime are studied.

149

Bibliography

[1] Baltimore-Washington International airport, weather station. Available at:

http://weather.marylandweather.com/cgi-bin/findweather/getForecast?query=BWI.

[2] A Robust Classification of Galaxy Spectra: Dealing with author = Connolly, A. J. and

Szalay, A. S., Noisy and Incomplete Data. The Astronomical Journal, 117:2052–2062,

May 1999.

[3] Andreas Krause. Submodular Function Optimization. Available at

http://www.mathworks.com/matlabcentral/fileexchange/20504.

[4] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin Vetterli. The

hitchhiker’s guide to successful wireless sensor network deployments. In SenSys ’08:

Proceedings of the 6th ACM conference on Embedded network sensor systems, pages 43–

56, New York, NY, USA, 2008. ACM.

[5] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, Martin Vetterli, Olivier

Couach, and Marc Parlange. Sensorscope: Out-of-the-box environmental monitoring. In

IPSN ’08: Proceedings of the 7th international conference on Information processing in

sensor networks, pages 332–343, Washington, DC, USA, 2008. IEEE Computer Society.

[6] Jug bay wetland sanctuary. Conserving and protecting the jug bay ecosystem. Available

at : http://www.jugbay.org/.

150

Bibliography Bibliography

[7] Bora Beran and David Valentine and Catharine Van Ingen and Ilya Za-

slavsky and Tom Whitenack. Observations Data Model. Available at

http://his.cuahsi.org/odmdatabases.html.

[8] P. J. Brockwell, R. A. Davis, and I. Netlibrary. Introduction to time series and forecast-

ing. 2002.

[9] T. Budavári, V. Wild, A. S. Szalay, L. Dobos, and C.-W. Yip. Reliable eigenspectra for

new generation surveys. mnras, 394:1496–1502, April 2009.

[10] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer: ultra-low power

data gathering in sensor networks. In Proceedings of the 6th IPSN Conference, 2007.

[11] Doug Carlson, Jayant Gupchup, Rob Fatland, and Andreas Terzis. K2: a system for cam-

paign deployments of wireless sensor networks. In Proceedings of the 4th international

conference on Real-world wireless sensor networks, REALWSN’10, pages 1–12, Berlin,

Heidelberg, 2010. Springer-Verlag.

[12] Alberto Cerpa, Jennifer L. Wong, Louane Kuang, Miodrag Potkonjak, and Deborah Es-

trin. Statistical Model of Lossy Links in Wireless Sensor Networks. In Proceedings of

IPSN 2005, May 2005.

[13] M. Chang, C. Cornou, K. Madsen, and P. Bonett. Lessons from the Hogthrob Deploy-

ments. In Proceedings of the Second International Workshop on Wireless Sensor Network

Deployments (WiDeploy08), June 2008.

[14] Yang Chen, Omprakash Gnawali, Maria Kazandjieva, Phil Levis, and John Regehr. Sur-

viving sensor network software faults. In SIGOPS, October 2009.

[15] Commonwealth Scientific and Industrial Research Organisation (CSIRO). 2-year

progress report: July 2004 to June 2006, 2004.

151

Bibliography Bibliography

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms, Second Edition. McGraw-Hill Science/Engineering/Math, July

2001.

[17] Crossbow Corporation. MICAz Specifications.

[18] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-driven

data acquisition in sensor networks. In Proceedings of VLDB, 2004.

[19] Richard O. Duda and Peter E. Hart. Use of the Hough transformation to detect lines

and curves in pictures. Commun. ACM, 15(1):11–15, 1972.

[20] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, 2001.

[21] Prabal Dutta, Jonathan Hui, Jaein Jeong, Sukun Kim, Cory Sharp, Jay Taneja, Gilman

Tolle, Kamin Whitehouse, and David Culler. Trio: Enabling sustainable and scalable

outdoor wireless sensor network deployments. In IEEE SPOTS, pages 407–415, 2006.

[22] J. E. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using

reference broadcasts. In Proceedings of the 5th Symposium on Operating Systems Design

and Implementation (OSDI), pages 147–163, December 2002.

[23] William C. Forsythea, Edward J. Rykiel Jr., Randal S. Stahla, Hsin-i Wua, and Robert M.

Schoolfield. A model comparison for daylength as a function of latitude and day of year.

ScienceDirect, 80(1), January 1994.

[24] John Fox. Robust regression: Appendix to an r and s-plus companion to applied regres-

sion, 2002.

152

Bibliography Bibliography

[25] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor net-

works. In Proceedings of the 1st ACM Conference on Embedded Networked Sensor System

(SenSys), pages 138–149, November 2003.

[26] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and David Culler. The

nesC Language: A Holistic Approach to Networked Embedded Systems. In Proceedings

of Programming Language Design and Implementation (PLDI) 2003, June 2003.

[27] Jayant Gupchup, Razvan Musaloiu-Elefteri, Alexander S. Szalay, and Andreas Terzis.

Sundial: Using sunlight to reconstruct global timestamps. In EWSN, pages 183–198,

2009.

[28] Yuan He, Lufeng Mo, Jiliang Wang, Wei Dong, Wei Xi, Tao Chen, Xingfa Shen, Yunhao

Liu, Jizhong Zhao, Xiangyang Li, and Guojun Dai. Poster: Why Are Long-Term Large-

Scale Sensor Networks Difficult? Lessons Learned from GreenOrbs. In MobiCom, 2009.

[29] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.

System architecture directions for network sensors. In Proceedings of ASPLOS 2000,

November 2000.

[30] P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted Least-

Squares. Communications in Statistics: Theory and Methods, A6:813–827, 1977.

[31] P. Huang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. Energy-efficient

Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with Ze-

braNet. In Proceedings of the Tenth Internationla Conferece on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-X), October 2002.

153

Bibliography Bibliography

[32] Taesung Kim, Luis Grimaldo, Jayant Gupchup, Andreas Terzis, and Jor-

dan Raddick. A visualization engine for the life under your feet project.

http://dracula.cs.jhu.edu/luyf/en/tools/VZTool/Default.aspx.

[33] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in

gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn.

Res., 9:235–284, June 2008.

[34] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: experiences from a

pilot sensor network deployment in precision agriculture. In Proceedings of the Parallel

and Distributed Processing Symposium (IPDPS), April 2006.

[35] Ming Li, Deepak Ganesan, and Prashant Shenoy. Presto: feedback-driven data man-

agement in sensor networks. In Proceedings of the 3rd conference on Networked Systems

Design & Implementation - Volume 3, NSDI’06, pages 23–23, Berkeley, CA, USA, 2006.

USENIX Association.

[36] Martin Lukac, Paul Davis, Robert Clayton, and Deborah Estrin. Recovering temporal

integrity with data driven time synchronization. In IPSN, pages 61–72, April 2009.

[37] Liqian Luo, Chengdu Huang, Tarek Abdelzaher, and John Stankovic. EnviroStore: A co-

operative storage system for disconnected operation in sensor networks. In INFOCOM,

2007.

[38] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson.

Wireless sensor networks for habitat monitoring. In Proceedings of 2002 ACM Interna-

tional Workshop on Wireless Sensor Networks and Applications, September 2002.

[39] R. A. Maronna, R. D. Martin, and V. J. Yohai. Robust statistics. John Wiley & Sons,

2006.

154

Bibliography Bibliography

[40] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding time

synchronization protocol. In SenSys, pages 39–49, November 2004.

[41] Warren A. Marrison. The evolution of the quartz crystal clock. The Bell System Technical

Journal, 27, 1948.

[42] J.R. McNeill and V. Winiwarterv. Breaking the sod: Humankind, history, and soil : Soils:

The Final frontier. . Proceedings of Science, 2004.

[43] David L. Mills. Internet time synchronization: The network time protocol. IEEE Trans-

actions on Communications, 39:1482–1493, 1991.

[44] Razvan Musaloiu-E., Chieh-Jan Liang, and Andreas Terzis. Koala: Ultra-low power

data retrieval in wireless sensor networks. In Proceedings of the 7th international sym-

posium on information processing in sensor networks (IPSN), pages 421–432, April 2008.

[45] National Estuarine Research Reserve. Jug Bay weather station (cbmjbwq). Available at

http://cdmo.baruch.sc.edu/QueryPages/anychart.cfm.

[46] D.E. Newell and R.H. Bangert. Temperature compensation of quartz crystal oscillators.

In 17th Annual Symposium on Frequency Control. 1963, pages 491–507, 1963.

[47] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj Chehade, Laura Balzano, Sheela

Nair, Sadaf Zahedi, Eddie Kohler, Greg Pottie, Mark Hansen, and Mani Srivastava.

Sensor network data fault types. ACM Trans. Sen. Netw., 5:25:1–25:29, June 2009.

[48] Consortium of Universities for the Advancement of Hydrologic Science Inc. Observations

Data Model. http://his.cuahsi.org/odmdatabases.html.

[49] Joseph Polastre, Jason Hill, and David Culler. Versatile Low Power Media Access for

Wireless Sensor Networks. In Proceedings of the 2nd ACM Sensys Confence, 2004.

155

Bibliography Bibliography

[50] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling Ultra-Low Power

Wireless Research. In Proceedings of the Fourth International Conference on Information

Processing in Sensor Networks: Special track on Platform Tools and Design Methods for

Network Embedded Sensors (IPSN/SPOTS), April 2005.

[51] M Jordan Raddick, Georgia Bracey, Pamela L Gay, Chris J Lintott, Phil Murray, Kevin

Schawinski, Alexander S Szalay, and Jan Vandenberg. Galaxy zoo: Exploring the moti-

vations of citizen science volunteers. Astronomy Education Review, 9(1):15, 2009.

[52] Nithya Ramanathan, Thomas Schoellhammer, Eddie Kohler, Kamin Whitehouse,

Thomas Harmon, and Deborah Estrin. Suelo: human-assisted sensing for exploratory

soil monitoring studies. In Proceedings of the 7th ACM Conference on Embedded Net-

worked Sensor Systems, SenSys ’09, pages 197–210, New York, NY, USA, 2009. ACM.

[53] Theodore S. Rappaport. Wireless Communications: Principles and Practice (2nd Edi-

tion). Prentice Hall PTR, 2 edition, January 2002.

[54] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[55] János Sallai, Branislav Kusy, Ákos Lédeczi, and Prabal Dutta. On the scalability of rout-

ing integrated time synchronization. In EWSN, volume 3868, pages 115–131. Springer,

2006.

[56] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Com-

mun. ACM, 18(11):613–620, 1975.

[57] Andre Santanche, Suman Nath, Jie Liu, Bodhi Priyantha, and Feng Zhao. Senseweb:

Browsing the physical world in real time. In Demo Abstract, Nashville, TN, April 2006.

[58] The sensor data bus. http://www.sensordatabus.org/default.aspx.

156

Bibliography Bibliography

[59] The Sloan Digital Sky Survey SkyServer. 2002.

[60] A. Sharma, L. Golubchik, and R. Govindan. On the prevalence of sensor faults in real

world deployments. In IEEE Conference on Sensor, Mesh and Ad Hoc Communications

and Networks (SECON), 2007.

[61] Abhishek B. Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults: Detection

methods and prevalence in real-world datasets. ACM Trans. Sen. Netw., 6:23:1–23:39,

June 2010.

[62] Baltimore Ecosystem Study. Research on metropolitan baltimore as an ecological sys-

tem. Available at : http://www.beslter.org/.

[63] R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler. An Analysis of a Large Scale

Habitat Monitoring Application. In Proceedings of SenSys 2004, November 2004.

[64] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler. Lessons from a

Sensor Network Expedition. In Proceedings of the 1st European Workshop on Wireless

Sensor Networks (EWSN ’04), January 2004.

[65] K. Szlavecz, A. Terzis, R. Musaloiu-E., C.-J. Liang, J. Cogan, A. Szalay, J. Gupchup,

J. Klofas, L. Xia, C. Swarth, and S. Matthews. Turtle Nest Monitoring with Wireless

Sensor Networks. In Proceedings of the American Geophysical Union, Fall Meeting,

2007.

[66] Jay Taneja, Jaein Jeong, and David Culler. Design, modeling, and capacity planning for

micro-solar power sensor networks. In IPSN ’08, pages 407–418, 2008.

[67] A. Terzis, R. Musaloiu-E., J. Cogan, K. Szlavecz, A. Szalay, J. Gray, S. Ozer, M. Liang,

J. Gupchup, and R. Burns. Wireless Sensor Networks for Soil Science. International

Journal on Sensor Networks.

157

Bibliography Bibliography

[68] Texas Instruments Incorporated. MSP430 Datasheet.

[69] Gilman Tolle, Joseph Polastre, Robert Szewczyk, Neil Turner, Kevin Tu, Phil Buon-

adonna, Stephen Burgess, David Gay, Wei Hong, Todd Dawson, and David Culler. A

Macroscope in the Redwoods. In Proceedings of the 3rd ACM SenSys Conference, Novem-

ber 2005.

[70] Twitter. An information network. Available at http://www.twitter.com/.

[71] Vaisala Industrial Instruments. CARBOCAP Carbon Diox-

ide Transmitter Series GMT220 specifications. Available at

http://www.vaisala.com/instruments/products/gmt220.html.

[72] Jillian C. Wallis, Christine L. Borgman, Matthew S. Mayernik, Alberto Pepe, Nithya

Ramanathan, and Mark H. Hansen. Know thy sensor: Trust, data quality, and data

integrity in scientific digital libraries. In ECDL, pages 380–391, 2007.

[73] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and Yield in a

Volcano Monitoring Sensor Network. In Proceedings of the 7th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2006.

[74] Geoffrey Werner-Allen, Stephen Dawson-Haggerty, and Matt Welsh. Lance: optimizing

high-resolution signal collection in wireless sensor networks. In Proceedings of the 6th

ACM conference on Embedded network sensor systems, SenSys ’08, pages 169–182, New

York, NY, USA, 2008. ACM.

[75] Yong Yang, Lili Wang, Dong Kun Noh, Hieu Khac Le, and Tarek F. Abdelzaher. Solar-

store: enhancing data reliability in solar-powered storage-centric sensor networks. In

Mobisys, pages 333–346, New York, NY, USA, 2009. ACM.

158

Bibliography Bibliography

[76] Marco Zú Zamalloa and Bhaskar Krishnamachari. An analysis of unreliability and

asymmetry in low-power wireless links. ACM Trans. Sen. Netw., 3(2):7, 2007.

[77] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in dense

wireless sensor networks. In Proceedings of the 1st international conference on Embed-

ded networked sensor systems, SenSys ’03, pages 1–13, New York, NY, USA, 2003. ACM.

159

Appendix A

Database Schemas

160

Appendix A. Database Schemas

Figure A.1: Schema for the stage database (excludes the metadata tables).

161

Appendix A. Database Schemas

Figure A.2: Schema for the science database.

162

Vita

Jayant Gupchup received his Bachelors in Computer Engineering from Mumbai University in

2003. From Sep 2003 to July 2005, he worked at the Inter-University Centre for Astronomy

and Astrophysics (IUCAA) under the supervision of Prof. Ajit Kembhavi. In Fall of 2005,

he began his Ph.D. at the Department of Computer Science at the Johns Hopkins University.

His research focusses on data management in long-term environmental monitoring networks,

and he is jointly advised by Dr. Andreas Terzis and Prof. Alex Szalay. In 2007, he interned at

the Microsoft Bay Area Research Center to work with Dr. Catharine Van Ingen. He received

a masters in Applied Mathematics and Statistics in May 2010 under the supervision of Prof.

Carey Priebe. After his Ph.D., he will join the parallel data warehousing team at Microsoft.

163

