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ABSTRACT

We investigate the quality of associations of astronomical sources using simulated detections
that are realistic in terms of their astrometric accuracy, small-scale clustering properties and
selections functions. We present a general method to build such mock catalogs for studying
associations, and compare the statistics of cross-identifications based on angular separation and
Bayesian probability criteria. In particular, we focus on the highly relevant problem of the
ultraviolet GALEX and optical SDSS surveys. Using refined simulations of the relevant catalogs,
we find that the probability thresholds yield lower contamination of false associations, and are
more efficient than angular separation. Our study concludes a set of recommended criteria to
construct reliable crossmatch catalogs with minimal artifacts.

Subject headings: astrometry - catalogs - methods: statistical

1. Introduction

Astrophysical studies can gain significantly by
associating data of different wavelength ranges of
the electromagnetic spectrum. Dedicated multi-
wavelength surveys have been a strong focus of
observational astronomy in recent years, e.g., the
Sloan Digital Sky Survey (SDSS; York et al. 2000).
They provide invaluable insights on stars and
galaxy properties. Other missions have been de-
signed to complement already existing programs.
For instance, several surveys of NASA’s Galaxy
Evolution Explorer (GALEX; Martin et al. 2005)
essentially provide the perfect ultraviolet counter-
parts of the SDSS optical data sets. Naturally,
these data are taken by different detectors of the
separate projects, and one has to combine their
information by associating the independent detec-
tions.

Recent work by Budavári & Szalay (2008)
laid down the statistical foundation of the cross-
identification problem. Their probabilistic ap-
proach assigns an objective Bayesian evidence and
subsequently a posterior probability to each po-
tential association, and can even consider physical

information, such as priors on the spectral en-
ergy distribution or redshift, in addition to the
positions on celestial sphere. In this paper, we
put the Bayesian formalism to work, and aim to
assess the benefit of using posterior probabilities
over angular separation cuts using mock catalogs
of GALEX and SDSS.

In Section 2, we present a general procedure to
build mock catalogs that take into account source
confusion and selection functions. Section 3 pro-
vides the details of the cross-identification strat-
egy, and defines the relevant quality measures of
the associations based on angular separation and
posterior probability. In Section 4, we present the
results for the GALEX-SDSS cross-identification,
and propose a set of criteria to build reliable com-
bined catalogs.

2. Simulations

The goal is to mimic the process of observation
and the creation of source lists as close as possible.
First, a mock catalog of artificial objects is gener-
ated with known clustering properties. The simu-
lated detections are observations of these objects
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with given astronometric accuracy and selections.
Hence the difference between separate sets of sim-
ulated detections, say for GALEX and SDSS, is
not only in the positions, but also they are differ-
ent subsets of the mock objects.

2.1. The Mock Catalog

We built the mock catalog as a combination of
clustered sources (for galaxies) and sources with a
random distribution (for stars). To simulate clus-
tered sources, we generate a realization of a Cox
point process, following the method described by
Pons-Bordeŕıa et al. (1999). This point process
has a known correlation function which is simi-
lar to that observed for galaxies. We create such
a process within a cone of 1Gpc; assuming the
notation of Pons-Bordeŕıa et al. (1999), we used
λs = 0.1 and l = 1h−1Mpc for the Cox process
parameters. For our purpose, it is sufficient that
the distribution on the sky (i.e., the angular corre-
lation function) of the mock galaxies displays clus-
tering up to scales equal to the search radius used
for the cross-identification (5′′ here) and that this
distribution is similar to the actual one. Figure 1
shows the angular correlation function of our mock
galaxy sample (filled squares) along with the mea-
surement obtained by Connolly et al. (2002) from
SDSS galaxies with 18 < r⋆ < 22. Note that the
galaxy clustering is not well known at small scales
(θ < 10′′) because of the combination of seeing,
point spread function, etc. Hence there is no con-
straint in his regime. There is nevertheless a good
overall agreement between our mock catalog and
the observations at scales between 10 and 30′′.

In the case of GALEX and SDSS, galaxies and
stars show on average similar densities over the
sky. We create a mock catalog over 100 sqdeg
with a total of 107 sources, half clustered and half
random.

2.2. Simulated Detections

From our mock catalog we create two sets of
simulated detections, using the approximate as-
trometry errors of the surveys we consider. We as-
sume that the errors are Gaussian, and create two
detections for each mock object: a mock SDSS de-
tection with σS , and a mock GALEX one with σG.
We consider constant errors for SDSS, and vari-
able errors for GALEX. For GALEX we will con-
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Fig. 1.— Angular correlation function of mock galax-
ies (filled squares) compared to the angular correlation
function of SDSS galaxies selected with 18 < r

⋆

< 22,
from Connolly et al. (2002) (filled circles).

sider two selections: all MIS objects, or MIS ob-
jects with signal-to-noise ratio (S/N) larger than
3. We randomly assign to the mock sources errors
from objects of the GALEX datasets following the
relevant selections and using the position error in
the NUV band (nuv poserr). The distributions
of these errors are shown on figure 2. In the case
of GALEX, the position errors are defined as the
combination of the Poisson error and the field er-
ror. The latter is assumed to be constant over the
field (and equal to 0.42′′ in NUV). For SDSS we
assume that σS = 0.1′′ for all objects. Our results
are unchanged if we use variable SDSS errors for
our SDSS mock detections, as the SDSS position
errors are significantly smaller than the GALEX
ones.

2.3. Selection function and detection merg-

ing

To be able to make a fair comparison with the
data, we need to include two effects: the selection
functions of both catalogs in order to match the
number density of the data, as well as merging of
the detections caused by the combination of the
seeing and point spread function.
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Fig. 2.— Distribution of astrometry errors for sim-
ulated detections. The solid line shows errors on nuv
detections for the selection of all GALEX MIS objects,
and dotted line for the MIS objects with S/N > 3.
These distributions are normalized by their integrals.

To apply the selection function, we assign to
each mock source a random number u, drawn
from an uniform distribution, which represents the
property of the objects. We use the values of u to
select the simulated detections we further consider
to study a given case of cross-identification. The
length of the interval in u sets the density for a
given mock catalog. Using the notations of Bu-
davári & Szalay (2008), we computed the number
density of SDSS GR7 sources,NSDSS and GALEX
GR5, NGALEX . These numbers set the interval in
u for both detection sets. We then use the over-
lap between the intervals in u to set the density
of common objects, as set by the prior determined
independently (see sect. 3).

To simulate the merging of the detections, we
performed the cross-identification of the SDSS and
GALEX detections sets with themselves, using a
search radius of 1.5′′ and 5′′ respectively. These
values of search radius correspond to the effective
widths of the PSF in both surveys (Stoughton et
al. 2002; Morrissey et al. 2007)1. We then con-
sider only the detections that satisfy the selection

1see also http://www.sdss.org/DR7/products/general/seeing.html

function criterion, and merge them. For SDSS, we
keep randomly one source within the various iden-
tifications. For GALEX, we keep the source with
the largest position error.

This procedure is repeated for each cross-
identification we consider, as modifying the se-
lection function naturally implies a change in the
number densities and priors.

3. Cross identification

We performed the cross-identification between
the SDSS and GALEX detection sets using a 5′′ ra-
dius. For each association (see Budavári & Szalay
2008), we compute the Bayes factor

B(ψ, σS , σG) =
2

σ2

S + σ2

G

exp

[

−

ψ2

2(σ2

S + σ2

G)

]

(1)

where ψ is the angular separation between the
two detections. We also derive the posterior prob-
ability that the two detections are from the same
source

P =

[

1 +
1 − P (H)

BP (H)

]

−1

(2)

where P (H) is the prior probability.

The Bayes factor, and hence the posterior prob-
ability depend on the position errors from both
surveys. As we use a constant prior P (H) this
implies that if all objects have the same position
errors within a survey, the posterior probability
depends on the angular separation only. In this
case, there is no difference between using a crite-
rion based upon separation or probability.

At this point, to make a fair comparison with
the data, we actually set the overlap between our
two detection sets such that the prior we derive
using the self-consistency argument discussed by
Budavári & Szalay (2008)

∑

P = N⋆ (3)

is equal to the value we derive for the actual
cross-identification between GALEX GR5 and
SDSS DR7.

Figure 3 shows the iteration process starting
from N⋆ = NGALEX for the case with all MIS ob-
jects (filled circles) or MIS S/N >3 objects (open
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circles). The procedure converges quickly in terms
of number of steps. Note also that the query we
use to compute the sum runs in roughly 1 second
on these simulations.

We also show the true prior we are required to
use in order to match the data; these true pri-
ors are slightly lower than the observed ones for
both selection: 4% lower for all MIS objects (solid
line on fig. 3), and 2.5% for MIS objects with S/N
>3 (dashed line). In other words, we need to use
less objects in the overlap between our detection
sets than what we expect from the data. The im-
pact of a change of the prior value on the poste-
rior probability also depends on the values of the
Bayes factor B. Given the scaling of the relation
between the posterior and prior probabilities (eq.
2), for low B values, a variation of 4% in the prior
yields a variation in posterior probability of the
same amount. For high B values, the variation
is about 0.5%. Hence this difference between the
true and observed priors has a negligible impact
on the values of the posterior probabilities derived
afterwards.
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Fig. 3.— Prior probability self-consistent estimation
as a function of iteration step. Filled circles show the
iteration for the case of all MIS objects, and open cir-
cles for MIS objects with S/N >3. The solid (dashed)
line shows the true prior for all MIS objects (MIS ob-
jects with S/N >3).

3.1. Rates

To quantify the quality of the cross-identification,
we define the true positive rate, T and the false
positive contamination, F . We can express these
quantities as a function of the angular separation
of the association, or the posterior probability.
Let n(x) be the number of associations, where
x denote separation or probability. This number
is the sum of the true and false positive cross-
identifications: n(x) = nT (x) + nF (x). We define
the true positive rate and false positive contami-
nation as a function of angular separation as

T (ψ) =

∑

nT (x < ψ)

NT

(4)

F (ψ) =

∑

nF (x < ψ)
∑

n(x < ψ)
(5)

where NT is the total number of true associa-
tions.

Similar rates are defined as a function of prob-
abilities:

T (P ) =

∑

nT (x > P )

NT

(6)

F (P ) =

∑

nF (x > P )
∑

n(x > P )
. (7)

We use the detection merging process to qualify
the cross-identifications as true or false. In our
final mock catalog, a detection represents a set of
detections that have been merged. We therefore
consider as a true cross-identification a case where
there is at least one detection in common within
the two sets of merged detections.

Figure 4 represents the true positive rate and
the false contamination rate as a function of an-
gular separation (left) and posterior probability
(right). These results suggest that in the case of
the SDSS GALEX-MIS cross-identification, it is
required to use a search radius of 5′′ in order to
recover all the true associations. In the case of
all MIS objects, 90% of the true matches are re-
covered at 1.64′′ with a 2.6% contamination from
false positive. As expected, results are better us-
ing objects with high signal-to-noise ratio (S/N
> 3), where 90% of the true matches are recov-
ered at 1.15′′ with a 1% contamination. Turning
to the posterior probability, the trends are simi-
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Fig. 4.— True positive contamination rate (in blue)
and false positive contamination (red) as a function
of angular separation (left) and posterior probability
(right). GALEX position errors from the full MIS
sample yield the curve in solid lines; the S/N > 3
constraint yields the curves in dashed lines. We also
show the posterior probability thresholds defined as in
Budavári & Szalay (2008) (vertical lines on right hand
side plot).

lar to the ones observed as a function of separa-
tion. However, the false positive contamination in-
creases less rapidly with probability. For instance,
a cut at P > 0.89 recovers 90% of the true asso-
ciations, with a slightly lower contamination from
false positive (2.3%). We examine in details the
benefits of using separation or probability as a cri-
terion in section 4.

4. Results

4.1. Performance analysis

Using the quantities defined above, we can build
a diagnostic plot in order to assess the overall qual-
ity of the cross-identification, and define a crite-
rion to select the objects to use in practice for
further analyzes. We show fig. 5 the true posi-
tive rate against the false positive contamination,
computed as a function of probability or angular
separation. We can compare the false positive con-
tamination that yields a given true positive rate
threshold for each of these parameters.

The results show that there are some differ-
ences between criteria based on angular separation
or posterior probability. Considering all GALEX
MIS objects (solid lines on fig. 5), for true positive
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Fig. 5.— Cross identification diagnostic plot: true
positive rate versus the false positive contamination.
These quantities are computed as a function of prob-
ability (blue) or separation (red). Solid lines show the
results for all GALEX MIS objects, and dashed lines
for GALEX MIS objects with S/N > 3.

rates lower than 0.82, the false contamination rate
is slightly lower when using angular separation as
a criterion. This range of true positive rates cor-
responds to angular separations smaller than 1.2′′.
As there is a lower limit to the GALEX position
errors, this translates into an upper limit in terms
of posterior probability at a given angular sepa-
ration. This in turn implies that the probability
criterion does not appear as efficient as the sepa-
ration one for small angular distances associations
in the SDSS-GALEX case.

At true positive rates higher than 0.82, this
trend reverses: considering a criterion based on
probability yields a lower false contamination rate.

4.2. Associations

The cross-identification list contains several
types of associations. We list in table 1 the per-
centages of these types in the mock catalog and,
in brackets, for the cross-identification between
SDSS DR7 to GALEX GR5 data.

The main contribution is from the one GALEX
to one SDSS (74%), but there are also, for the
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Table 1

Percentages of associations by type

SDSS
GALEX 1 2 Many

1 74.061 (75.870) 21.007 (18.595) 2.577 (2.469)

2 1.146 (2.253) 1.006 (0.697) 0.188 (0.102)

Many 0.006 (0.009) 0.007 (0.004) 0.002 (0.001)

Note.—Percentages of associations by type in the mock cat-
alogs. The numbers in brackets give the percentages from the
cross-identification of SDSS DR7 and GALEX GR5 data. All per-
centages are given with respect to the total number of matches.

0.0 0.2 0.4 0.6 0.8
Probability

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

F
ra

ct
io

n

SDSS x GALEX 

0.0 0.2 0.4 0.6 0.8 1.0
Probability

 

 

 

 

 

 
SDSS x GALEX MIS S/N >3

1 GALEX MIS x 1 SDSS
1 GALEX MIS x 2 SDSS
1 GALEX MIS x many SDSS
True
False

Fig. 6.— True positive rate (blue) and false contam-
ination rate (red) as a function of probability for the
one GALEX to one SDSS (solid lines), one GALEX to
two SDSS (dashed lines), one GALEX to many SDSS
(dotted lines) associations. The left panel show these
rates for all GALEX MIS objects, and the right one
for the GALEX MIS objects with S/N >3.

most significant ones, cases of one GALEX to
two SDSS (21%) or one GALEX to many SDSS
(3%). Comparing with the data, our mock cata-
logs are slightly pessimistic in the sense that the
proportion of one to one matches is lower than in
the data. However, these proportions match rea-
sonably well enough, which enables us to discuss
these cases in the context of our mock catalogs.
We show on figure 6 the true positive and false
contamination rates as a function of probability
and on figure 7 the diagnostic curves for the one
GALEX to one SDSS (solid lines), one GALEX
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Fig. 7.— True positive rates as a function of the false
contamination rate for the one GALEX to one SDSS
(solid lines), one GALEX to two SDSS (dashed lines),
one GALEX to many SDSS (dotted lines) associations.
In each panel the inset details the one GALEX to two
SDSS and one GALEX to many SDSS cases. The
rates are computed as a function of probability (blue)
or separation (red). The left panel show these rates
for all GALEX MIS objects, and the right one for the
GALEX MIS objects with S/N >3.

to two SDSS (dashed lines), and one GALEX
to many SDSS (dotted lines) associations. The
one GALEX to one SDSS true associations rep-
resent the bulk (up to 85%) of the total cross-
identifications. There is also a significant fraction
of true associations within the one GALEX to two
SDSS cases (up to nearly 13%), while the one to
many are around 1%. For the one to two or one to
many cases, we use two methods to select one ob-
ject among the various associations: the one cor-
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responding to the highest probability or the small-
est separation. We computed the true positive and
false contamination rates for these cases as a func-
tion of the quantity used for the selection of the
association. We compare the results from these
two methods on figure 7. The diagnostic curves
show the same trend than the global ones (see
fig. 5): the posterior probability criterion yields
a lower false contamination rate than the angu-
lar separation criterion above some true positive
rate value (e.g. 0.11 for one GALEX to two SDSS
associations considering the cross-identification of
all SDSS GALEX objects). This is however an
artifact caused by the distribution of the GALEX
position errors (see sect. 4.1). For the one to two
or one to many cases, these results show that true
associations can be recovered selecting maximal
probability, with a low contamination from false
positive (up to around 1%).

We compare on fig. 6 and 7 the results from
all GALEX MIS objects and GALEX MIS ob-
jects with S/N > 3. The quality of the cross-
identifications are better for the latter, for all
types of associations.

4.3. Alternate Error model

The accuracy of the analysis of the quality of
the cross-identification strongly depends on the
GALEX pipeline position errors. As an alterna-
tive errors model we consider the angular sepa-
ration to the SDSS sources measured during the
cross-identification process. In principle the distri-
bution of the angular separations of the associa-
tions results from the combination of the GALEX
and SDSS position errors. However the latter are
significantly smaller than the former, so we con-
sider the SDSS errors as negligible here. We com-
pared the position error in the NUV band from
the GALEX pipeline to the distance to the SDSS
sources. While there is some scatter, the angular
separation between the sources of the two surveys
are significantly larger than the GALEX pipeline
errors. We assumed a linear relation to modify
the GALEX errors in order to match the angular
separations to the SDSS sources

NUVmod
poserr = 2.2NUVposerr − 0.3 (8)

where the position errors are in units of arcsec.
We followed the same steps as described in sect.
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Fig. 8.— Same as figure 5 using alternate position
errors for GALEX sources (see text).

2.2 and 2.3 with these new errors and performed
the cross-identification. The diagnostic curves we
obtain are presented on fig. 8.

The trends are similar to those observed using
the GALEX pipeline errors. The quality of the
cross-identification is nevertheless worse with the
alternate errors, as the contamination from false
positive is larger at a given true positive rate. For
instance, for all GALEX MIS objects, with 90%
of the true associations and considering posterior
probability as a criterion, the contamination is 5%
compared to 2.3% using the GALEX pipeline er-
rors. Note also that the difference between the
angular separation and the probability diagnostic
curves is larger with this alternate error model.
This suggests that the probability is a more effi-
cient way than angular separation to select cross-
identifications for surveys with larger position er-
rors.

4.4. Building a GALEX-SDSS catalog

The combination of the results we presented can
be used to define a set of criteria in order to build
reliable GALEX-SDSS catalogs. It is natural to
have different selections for each type of associa-
tion. We will here focus on the one GALEX to
one SDSS and one GALEX to two SDSS cases, as
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Table 2

Selection criteria for SDSS-GALEX sample

Association Probability cut False positive contamination

1 GALEX to 1 SDSS P > 0.877 1.6

1 GALEX to 2 SDSS P > 0.955 0.2

1 GALEX (S/N > 3) to 1 SDSS P > 0.939 0.7

1 GALEX (S/N > 3) to 2 SDSS P > 0.982 0.1

Note.—Posterior probability cuts to obtain 80% (10%) of the true associations for
the one GALEX to one SDSS (one GALEX to two SDSS) matches. The corresponding
false positive contamination percentages are also listed. The first two lines give the
cuts for all GALEX MIS objects and the two last ones for the GALEX MIS objects
with S/N > 3.

they represent around 95% of the associations.

We propose in table 2 a set of criteria, based
on the posterior probability, to get 90% of the
true cross-identifications, consisting of 80% of one
GALEX to one SDSS and 10% of one GALEX
to two SDSS. We also list the corresponding false
positive contamination. These cuts enable to build
catalogs with 1.8% of false positive when using all
GALEX objects, or 0.8% when using GALEX ob-
jects with S/N > 3.

5. Conclusions

We presented a general method using sim-
ple mock catalogs to assess the quality of the
cross-identification between two surveys which
takes into account the angular distribution of
the sources, the sources confusion and the se-
lection functions of the surveys. We applied this
method to the cross-identification of the SDSS
and GALEX sources. We used the probabilistic
formalism of (Budavári & Szalay 2008) to study
how the quality of the associations can be quanti-
fied by the posterior probability. Our results show
that criteria based on posterior probability yield
lower contamination rate from false positive than
criteria based on angular separation between the
associations. The posterior probability is more
efficient than angular separation for surveys with
larger position errors. We finally proposed a set of
selection criteria based on posterior probability to
build reliable SDSS-GALEX catalogs that yield
90% of the true associations with less than 2%

contamination from false positive.
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