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ABSTRACT
We investigate the quality of associations of astronomical sources from multi-wavelength ob-

servations using simulated detections that are realistic in terms of their astrometric accuracy,
small-scale clustering properties and selection functions. We present a general method to build
such mock catalogs for studying associations, and compare the statistics of cross-identifications
based on angular separation and Bayesian probability criteria. In particular, we focus on the
highly relevant problem of cross-correlating the ultraviolet GALEX and optical SDSS surveys.
Using refined simulations of the relevant catalogs, we find that the probability thresholds yield
lower contamination of false associations, and are more efficient than angular separation. Our
study presents a set of recommended criteria to construct reliable crossmatch catalogs with min-
imal artifacts.

Subject headings: astrometry - catalogs - methods: statistical

1. Introduction

Astrophysical studies can gain significantly by
associating data from different wavelength ranges
of the electromagnetic spectrum. Dedicated multi-
wavelength surveys have been a strong focus of
observational astronomy in recent years, e.g., the
Sloan Digital Sky Survey (SDSS; York et al. 2000).
They provide invaluable insights on stars and
galaxy properties. Other missions have been de-
signed to complement already existing programs.
For instance, several surveys of NASA’s Galaxy
Evolution Explorer (GALEX; Martin et al. 2005)
essentially provide the perfect ultraviolet counter-
parts of the SDSS optical data sets.

Naturally, these data are taken by different de-
tectors of the separate projects, and one has to
combine their information by associating the inde-
pendent detections. Recent work by Budavári &
Szalay (2008) laid down the statistical foundation
of the cross-identification problem. Their proba-
bilistic approach assigns an objective Bayesian ev-
idence and subsequently a posterior probability to
each potential association, and can even consider

physical information, such as priors on the spec-
tral energy distribution or redshift, in addition to
the positions on celestial sphere. In this paper, we
put the Bayesian formalism to work, and aim to
assess the benefit of using posterior probabilities
over simple angular separation cuts using mock
catalogs of GALEX and SDSS. In Section 2, we
present a general procedure to build mock catalogs
that take into account source confusion and selec-
tion functions. Section 3 provides the details of the
cross-identification strategy, and defines the rele-
vant quality measures of the associations based on
angular separation and posterior probability. In
Section 4, we present the results for the GALEX-
SDSS cross-identification, and propose a set of cri-
teria to build reliable combined catalogs.

2. Simulations

The goal is to mimic the process of observation
and the creation of source lists as close as possible.
First, a mock catalog of artificial objects is gener-
ated with known clustering properties. The simu-
lated detections are observations of these objects
with given astronometric accuracy and selections.
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Hence the difference between separate sets of sim-
ulated detections, say for GALEX and SDSS, is
not only in the positions, but also they are differ-
ent subsets of the mock objects.

2.1. The Mock Catalog

We built the mock catalog as a combination of
clustered sources (for galaxies) and sources with a
random distribution (for stars). To simulate clus-
tered sources, we generate a realization of a Cox
point process, following the method described by
Pons-Bordeŕıa et al. (1999). This point process
has a known correlation function which is similar
to that observed for galaxies. We create such a
process within a cone of 1Gpc depth; assuming
the notation of Pons-Bordeŕıa et al. (1999), we
used λs = 0.1 and l = 1h−1Mpc for the Cox pro-
cess parameters. For our purpose, it is sufficient
that the distribution on the sky (i.e., the angular
correlation function) of the mock galaxies displays
clustering up to scales equal to the search radius
used for the cross-identification (5′′ here) and that
this distribution is similar to the actual one. Fig-
ure 1 shows the angular correlation function of our
mock galaxy sample (filled squares) along with the
measurement obtained by Connolly et al. (2002)
from SDSS galaxies with 18 < r! < 22. Note that
the galaxy clustering is not well known at small
scales (θ < 10′′) because of the combination of
seeing, point spread function, etc. Hence there is
no constraint in his regime. There is nevertheless
a good overall agreement between our mock cata-
log and the observations at scales between 10 and
30′′.

In the case of both GALEX and SDSS, galaxies
and stars show on average similar densities over
the sky. We create a mock catalog over 100 sqdeg
with a total of 107 sources, half clustered and half
random.

2.2. Simulated Detections

From our mock catalog we create two sets of
simulated detections, using the approximate as-
trometry errors of the surveys we consider. We as-
sume that the errors are Gaussian, and create two
detections for each mock object: a mock SDSS de-
tection with σS , and a mock GALEX one with σG.
We consider constant errors for SDSS, and vari-
able errors for GALEX. For GALEX we will con-
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Fig. 1.— Angular correlation function of mock galax-
ies (filled squares) compared to the angular correlation
function of SDSS galaxies selected with 18 < r! < 22,
from Connolly et al. (2002) (filled circles).

sider two selections: all MIS objects, or MIS ob-
jects with signal-to-noise ratio (S/N) larger than
3. We randomly assign to the mock sources errors
from objects of the GALEX datasets following the
relevant selections and using the position error in
the NUV band (nuv poserr). The distributions
of these errors are shown on figure 2. In the case
of GALEX, the position errors are defined as the
combination of the Poisson error and the field er-
ror, added in quadrature. The latter is assumed
to be constant over the field (and equal to 0.42′′ in
NUV). For SDSS we assume that σS = 0.1′′ for all
objects. Our results are unchanged if we use vari-
able SDSS errors for our SDSS mock detections, as
the SDSS position errors are significantly smaller
than the GALEX ones.

2.3. Selection function and confusion

To be able to make a fair comparison with the
data, we need to include two effects: the selection
functions of both catalogs in order to match the
number density of the data, as well as the con-
fusion of detections caused by the combination of
the seeing and point spread functions.

To apply the selection function, we assign to
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Fig. 2.— Distribution of astrometry errors for sim-
ulated detections. The solid line shows errors on nuv
detections for the selection of all GALEX MIS objects,
and dotted line for the MIS objects with S/N > 3.
These distributions are normalized by their integrals.

each mock source a random number u, drawn
from an uniform distribution, which represents the
property of the objects. We use the values of u to
select the simulated detections we further consider
to study a given case of cross-identification. The
length of the interval in u sets the density for a
given mock catalog. Using the notations of Bu-
davári & Szalay (2008), we computed the number
density of SDSS GR7 sources, NSDSS and GALEX
GR5, NGALEX. These numbers set the interval in
u for both detection sets. We then use the over-
lap between the intervals in u to set the density
of common objects, as set by the prior determined
independently (see sect. 3).

To simulate the confusion of the detections, we
performed the cross-identification of the SDSS and
GALEX detections sets with themselves, using a
search radii of 1.5′′ and 5′′ respectively. These
values of search radius correspond to the effective
widths of the PSF in both surveys (Stoughton et
al. 2002; Morrissey et al. 2007)1. We then con-
sider only the detections that satisfy the selection
function criterion, and merge them. For SDSS, we

1see also http://www.sdss.org/DR7/products/general/seeing.html

keep one source chosen randomly from the various
identifications. For GALEX, we keep the source
with the largest position error.

This procedure is repeated for each cross-
identification we consider, as modifying the se-
lection function naturally implies a change in the
number densities and priors.

3. Cross identification

We performed the cross-identification between
the SDSS and GALEX detection sets using a 5′′ ra-
dius. For each association (see Budavári & Szalay
2008), we compute the Bayes factor

B(ψ; σS , σG) =
2

σ2
S + σ2

G

exp
[
− ψ2

2(σ2
S + σ2

G)

]

(1)
where ψ is the angular separation between the two
detections. We also derive the posterior proba-
bility that the two detections are from the same
source

P =
[
1 +

1 − P0

B P0

]−1

≈ B P0

1 + B P0
(2)

where P0 is the prior probability, and the approx-
imation is for the usually small priors.

The Bayes factor, and hence the posterior prob-
ability depend on the position errors from both
surveys. As we use a constant prior P0 this implies
that if all objects have the same position errors
within a survey, the posterior probability depends
on the angular separation only. In this case, there
is no difference between using a criterion based
upon separation or probability.

At this point, to make a fair comparison with
the data, we set the overlap between our two detec-
tion sets iteratively. The prior is derived using the
self-consistency argument discussed by Budavári
& Szalay (2008)

∑
P = N! (3)

is equal to the value we derive for the actual cross-
identification between GALEX GR5 and SDSS
DR7.

Figure 3 shows the iteration process starting
from N! = NGALEX for the case with all MIS ob-
jects (filled circles) or MIS S/N >3 objects (open
circles). The procedure converges quickly in terms
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of number of steps. Note also that the query we
use to compute the sum runs in roughly 1 second
on these simulations.

We also show the true prior we are required to
use in order to match the data is slightly lower
than the observed ones for both selections: 4%
lower for all MIS objects (solid line on fig. 3), and
2.5% for MIS objects with S/N >3 (dashed line).
In other words, we need to use less objects in the
overlap between our detection sets than what we
expect from the data. The impact of a change of
the prior value on the posterior probability also de-
pends on the values of the Bayes factor B. Given
the scaling of the relation between the posterior
and prior probabilities (eq. 2), for low B values,
a variation of 4% in the prior yields a variation
in posterior probability of the same amount. For
high B values, the variation is about 0.5%. Hence
this difference between the true and observed pri-
ors has a negligible impact on the values of the
posterior probabilities derived afterwards.
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Fig. 3.— Prior probability self-consistent estimation
as a function of iteration step. Filled circles show the
iteration for the case of all MIS objects, and open cir-
cles for MIS objects with S/N >3. The solid (dashed)
line shows the true prior for all MIS objects (MIS ob-
jects with S/N >3).

3.1. Rates

To quantify the quality of the cross-identification,
we define the true positive rate, T and the false
positive contamination, F . We can express these
quantities as a function of the angular separation
of the association, or the posterior probability.
Let n(x) be the number of associations, where
x denote separation or probability. This number
is the sum of the true and false positive cross-
identifications: n(x) = nT (x) + nF (x). We define
the true positive rate and false positive contami-
nation as a function of angular separation as

T (ψ) =
∑

nT (x < ψ)
NT

(4)

F (ψ) =
∑

nF (x < ψ)∑
n(x < ψ)

(5)

where NT is the total number of true associations.
Similar rates are defined as a function of the prob-
ability,

T (P ) =
∑

nT (x > P )
NT

(6)

F (P ) =
∑

nF (x > P )∑
n(x > P )

. (7)

We use the detection merging process to qualify
the cross-identifications as true or false. In our
final mock catalog, a detection represents a set of
detections that have been merged. We therefore
consider a case as a true cross-identification where
there is at least one detection in common within
the two sets of merged detections.

Figure 4 represents the true positive rate and
the false contamination rate as a function of an-
gular separation (left) and posterior probability
(right). These results suggest that in the case of
the SDSS GALEX-MIS cross-identification, it is
required to use a search radius of 5′′ in order to
recover all the true associations. In the case of
all MIS objects, 90% of the true matches are re-
covered at 1.64′′ with a 2.6% contamination from
false positive. As expected, results are better us-
ing objects with high signal-to-noise ratio (S/N
> 3), where 90% of the true matches are recov-
ered at 1.15′′ with a 1% contamination. Turning
to the posterior probability, the trends are simi-
lar to the ones observed as a function of separa-
tion. However, the false positive contamination in-
creases less rapidly with probability. For instance,
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Fig. 4.— True positive contamination rate (in blue)
and false positive contamination (red) as a function
of angular separation (left) and posterior probability
(right). GALEX position errors from the full MIS
sample yield the curve in solid lines; the S/N > 3
constraint yields the curves in dashed lines. We also
show the posterior probability thresholds defined as in
Budavári & Szalay (2008) (vertical lines on right hand
side plot).

a cut at P > 0.89 recovers 90% of the true asso-
ciations, with a slightly lower contamination from
false positive (2.3%). We examine in details the
benefits of using separation or probability as a cri-
terion in Section 4.

4. Results

4.1. Performance analysis

Using the quantities defined above, we can build
a diagnostic plot in order to assess the overall qual-
ity of the cross-identification, and define a crite-
rion to select the objects to use in practice for
further analyzes. We show on Fig. 5 the true pos-
itive rate against the false positive contamination,
computed as a function of probability or angular
separation. We can compare the false positive con-
tamination that yields a given true positive rate
threshold for each of these parameters.

The results show that there are some differ-
ences between criteria based on angular separation
or posterior probability. Considering all GALEX
MIS objects (solid lines on fig. 5), for 1−T > 0.18,
the false contamination rate is slightly lower when
using angular separation as a criterion. This range
of true positive rates corresponds to angular sepa-
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Fig. 5.— Cross identification diagnostic plot: true
positive rate versus the false positive contamination.
These quantities are computed as a function of prob-
ability (blue) or separation (red). Solid lines show the
results for all GALEX MIS objects, and dashed lines
for GALEX MIS objects with S/N > 3. The dotted
line represents the locus of 1 − T = F .

rations smaller than 1.2′′. As there is a lower limit
to the GALEX position errors, this translates into
an upper limit in terms of posterior probability at
a given angular separation. This in turn implies
that the probability criterion does not appear as
efficient as separation for associations at small an-
gular distances in the SDSS-GALEX case.

At 1−T < 0.18, this trend reverses: considering
a criterion based on probability yields a lower false
contamination rate.

We can characterize these diagnostic curves by
the Bayes threshold, where 1−T = F , which mini-
mizes the Bayes error. The location of this thresh-
old is represented on fig. 5 by the intersection be-
tween the diagnostic curves and the dotted line.
Our results show that this intersection happens at
lower false positive contamination rate when using
the posterior probability as criterion.

For all GALEX objects, the separation where
1 − T = F , ψc, is equal to 2.307′′ and the prob-
ability, Pc is 0.613. Using the angular separation
as criterion, the Bayes error is then Pe = 0.102;
using the posterior probability, Pe = 0.091. For
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Fig. 6.— True positive rate (blue) and false contam-
ination rate (red) as a function of probability for the
one GALEX to one SDSS (solid lines), one GALEX to
two SDSS (dashed lines), one GALEX to many SDSS
(dotted lines) associations. The left panel show these
rates for all GALEX MIS objects, and the right one
for the GALEX MIS objects with S/N >3.

GALEX objects with S/N >3, ψc =1.882′′, Pc =
0.665; Pe = 0.055 using the angular separation
and Pe = 0.049 using the posterior probability.

These results show that a selection based on
posterior probability yields better results (i.e., a
lower false contamination rate, and lower Bayes
error) than a selection based on angular separa-
tion.

4.2. Associations

Beyond the confused objects, the cross-identification
list contains several types of associations, where
a single detection in one catalog is linked to pos-
sibly more than one detection in the other. We
list in table 1 the contingency table of the per-
centages of these types in the mock catalog and,
in brackets, for the SDSS DR7 to GALEX GR5
cross-identifications.

The main contribution is from the one GALEX
to one SDSS (1G1S, 74%), but there are also, for
the most significant ones, cases of one GALEX to
two SDSS (1G2S, 21%) or one GALEX to many
SDSS (1GmS, 3%). Comparing with the data, our
mock catalogs are slightly pessimistic in the sense
that the fraction of one to one matches is lower
than in the observations. However, these fractions
match reasonably well enough, which enables us to
discuss these cases in the context of our mock cat-
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Fig. 7.— True positive rates as a function of the false
contamination rate for the one GALEX to one SDSS
(solid lines), one GALEX to two SDSS (dashed lines),
one GALEX to many SDSS (dotted lines) associations.
In each panel the inset details the one GALEX to two
SDSS and one GALEX to many SDSS cases. The
rates are computed as a function of probability (blue)
or separation (red). The left panel show these rates
for all GALEX MIS objects, and the right one for the
GALEX MIS objects with S/N >3.

alogs. We show on figure 6 the true positive and
false contamination rates as a function of prob-
ability and on figure 7 the diagnostic curves for
the 1G1S (solid lines), 1G2S (dashed lines), and
1GmS (dotted lines) associations. The 1G1S true
associations represent the bulk (up to 85%) of the
total cross-identifications. There is also a signif-
icant fraction of true associations within the one
1G2S cases (up to nearly 13%), while the 1GmS
are around 1%. For the 1G2S or 1GmS cases, we
use two methods to select one object among the
various associations: the one corresponding to the
highest probability or the smallest separation. We
computed the true positive and false contamina-
tion rates for these cases as a function of the quan-
tity used for the selection of the association. We
compare the results from these two methods on
Figure 7. The diagnostic curves show the same
trend than the global ones (see Fig. 5): the poste-
rior probability criterion yields a lower false con-
tamination rate than the angular separation cri-
terion above some true positive rate value (e.g.,
1−T < 0.09, for 1G2S associations considering the
cross-identification of all SDSS GALEX objects).
This is however an artifact caused by the distribu-
tion of the GALEX position errors (see sect. 4.1).
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Table 1
Percentages of associations by type

SDSS
GALEX 1 2 Many

1 74.061 (75.870) 21.007 (18.595) 2.577 (2.469)

2 1.146 (2.253) 1.006 (0.697) 0.188 (0.102)

Many 0.006 (0.009) 0.007 (0.004) 0.002 (0.001)

Note.—Percentages of associations by type in the mock cat-
alogs. The numbers in brackets give the percentages from the
cross-identification of SDSS DR7 and GALEX GR5 data. All per-
centages are given with respect to the total number of matches.

For the 1G2S or 1GmS cases, these results show
that true associations can be recovered by select-
ing maximal probability, with a low contamination
from false positive (up to around 1%).

On Figs. 6 and 7 we compare the results from
all GALEX MIS objects and GALEX MIS ob-
jects with S/N > 3. The quality of the cross-
identifications are better for the latter, for all
types of associations.

4.3. Alternate Error model

The accuracy of the analysis of the quality of
the cross-identification strongly depends on the
GALEX pipeline position errors. As an alterna-
tive estimation of realistic errors we consider the
angular separation to the SDSS sources measured
during the cross-identification process. In prin-
ciple the distribution of the angular separations
of the associations depends on the combination of
the GALEX and SDSS position errors. However,
the latter are significantly smaller than the for-
mer, so we consider the SDSS errors as negligible
here. We compared the position error in the NUV
band from the GALEX pipeline to the distance
to the SDSS sources. While there is some scat-
ter, the angular separation between the sources of
the two surveys are significantly larger than the
quoted GALEX pipeline errors. We fitted a linear
relation to modify the GALEX errors in order to
match the angular separations to the SDSS sources

NUVmod
poserr = 2.2NUVposerr − 0.3 (8)

where the position errors are in units of arcsec.
Then we followed the same steps as described in
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Fig. 8.— Same as figure 5 using alternate position
errors for GALEX sources (see text).

sect. 2.2 and 2.3 with these new errors and per-
formed the cross-identification. The diagnostic
curves we obtain are presented on Fig. 8.

The trends are similar to those observed using
the GALEX pipeline errors. The quality of the
cross-identification is nevertheless worse with the
alternate errors. In this case, the values of angular
separation and probability where 1 − T = F are
ψc = 3.126′′, Pc = 0.711 for all GALEX objects.
Using the angular separation as a criterion, Pe =
0.144 (0.102 with the GALEX pipeline error), and
Pe = 0.127 (0.091 with pipeline errors) with the
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posterior probability. For GALEX objects with
S/N > 3, ψc = 2.514′′, Pc = 0.780 ; Pe = 0.0958
(0.055, pipeline errors) using angular separation,
and Pe = 0.0812 (0.049, pipeline errors) with the
posterior probability.

In other words, the contamination from false
positive is larger at a given true positive rate. For
instance, for all GALEX MIS objects, with 90%
of the true associations and considering posterior
probability as a criterion, the contamination is 5%
compared to 2.3% using the GALEX pipeline er-
rors. Note also that the difference between the
angular separation and the probability diagnostic
curves is larger with this alternate error model.
This suggests that the probability is a more effi-
cient way than angular separation to select cross-
identifications for surveys with larger position er-
rors.

4.4. Building a GALEX-SDSS catalog

The combination of the results we presented can
be used to define a set of criteria for constructing
a reliable joint GALEX-SDSS catalog. It is nat-
ural to have different selections for each type of
association. We will here focus on the 1G1S and
1G2S cases, as they represent around 95% of the
associations.

In Table 2 we propose a set of criteria, based on
the posterior probability, to get 90% of the true
cross-identifications, consisting of 80% of 1G1S
and 10% of 1G2S. We also list the correspond-
ing false positive contamination. These cuts en-
able to build catalogs with 1.8% of false positive
when using all GALEX objects, or 0.8% when us-
ing GALEX objects with S/N > 3.

5. Conclusions

We presented a general method using simple
mock catalogs to assess the quality of the cross-
identification between two surveys which takes
into account the angular distribution and confu-
sion of sources, and the respective selection func-
tions of the surveys. We applied this method to
the cross-identification of the SDSS and GALEX
sources. We used the probabilistic formalism of
Budavári & Szalay (2008) to study how the qual-
ity of the associations can be quantified by the
posterior probability. Our results show that crite-
ria based on posterior probability yield lower con-

tamination rates from false positive than criteria
based on angular separation. In particular, the
posterior probability is more efficient than angu-
lar separation for surveys with larger position er-
rors. We finally proposed a set of selection crite-
ria based on posterior probability to build reliable
SDSS-GALEX catalogs that yield 90% of the true
associations with less than 2% contamination from
false positive.
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Budavári, T., & Szalay, A. S. 2008, ApJ, 679, 301

Connolly, A. J., et al. 2002, ApJ, 579, 42

Martin, D. C., et al. 2005, ApJ, 619, L1

Morrissey, P., et al. 2007, ApJS, 173, 682
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Table 2
Selection criteria for SDSS-GALEX sample

Association Probability cut False positive contamination

1 GALEX to 1 SDSS P > 0.877 1.6

1 GALEX to 2 SDSS P > 0.955 0.2

1 GALEX (S/N > 3) to 1 SDSS P > 0.939 0.7

1 GALEX (S/N > 3) to 2 SDSS P > 0.982 0.1

Note.—Posterior probability cuts to obtain 80% (10%) of the true associations for
the one GALEX to one SDSS (one GALEX to two SDSS) matches. The corresponding
false positive contamination percentages are also listed. The first two lines give the
cuts for all GALEX MIS objects and the two last ones for the GALEX MIS objects
with S/N > 3.
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