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M ost scientific disciplines
have long had both
empirical and theoretical
branches. In the past 50
years, many disciplines—

ranging from physics to ecology to lin-
guistics—have also grown a third,
computational branch. Computational
science emerged from the inability to
find closed-form solutions for complex
mathematical models. Computers make
it possible to simulate such models. 

In recent years, computational sci-
ence has evolved to include informa-
tion management to deal with the
flood of data resulting from 

• new scientific instruments that, dri-
ven by Moore’s law, double their
data output every year or so;

• the ability to economically store
petabytes of data online; and 

• the Internet and Grid, which make
archived data accessible to anyone,
anywhere.

Acquisition, organization, query,
and visualization tasks scale almost
linearly with data volumes. Parallel
computers can solve these problems
within minutes or hours. 

However, the computational efforts
of most statistical analysis and data-
mining algorithms increase superlin-
early. Many tasks involve computing
statistics among sets of data points
in some metric space. For example,
pair algorithms on N points scale as
N2. If the data increases a thousand-
fold, the work and time can grow 
by a factor of a million. Many clus-
tering algorithms scale even worse
and are infeasible for terabyte-scale
datasets. 

DATA-CENTRIC COMPUTATION 
Next-generation computational sys-

tems will generate and analyze peta-
scale information stores. For example,
the BaBar detector at the Stanford
Linear Accelerator Center currently
processes and reprocesses a Pbyte of
event data; about 60 percent of the
system’s hardware budget is for stor-
age and IO bandwidth (www-db.cs.
wisc.edu/cidr/papers/P06.pdf).  

The Atlas (http://atlasexperiment.
org) and CMS (www.cmsinfo.cern.ch)
particle detection systems have
requirements at least 100 times higher.
The Large Synoptic Survey Telescope
(www. lsst.org) has needs in the same

range: petaoperations per second of
processing and tens of Pbytes of 
storage. 

BUILDING BALANCED SYSTEMS 
System performance has been im-

proving in line with Moore’s law and
will continue to do so as multicore
processors replace single-processor
chips and memory hierarchies evolve.
Within five years, a simple, shared-
memory multiprocessor will deliver
about half a teraoperation per sec-
ond.  

Much of the effort in building
Beowulf clusters and supercomputing
centers has focused on CPU-intensive
TOP500 systems (www.top500.org).
Meanwhile, in most sciences the
amount of both experimental and
simulated data has been increasing
even faster than Moore’s law because
instruments are getting much better
and cheaper and storage costs have
been decreasing dramatically. 

Amdahl’s laws
Four decades ago, Gene Amdahl

coined many rules of thumb for com-
puter architects:

• Parallelism—if a computation has
a serial part S and a parallel com-
ponent P, then the maximum
speedup is S/(S + P).

• Balanced system—a system needs
a bit of I/O per second per instruc-
tion per second.  

• Memory—the Mbyte/MIPS ratio
(α) in a balanced system is 1.

• Input/output—programs do one
I/O per 50,000 instructions.

Although α has increased and caused
a slight reduction in I/O density, these
“laws” are still generally valid (http://
computer.org/proceedings/icde/0506/
05060003abs.htm).  

In addition, computer systems typ-
ically allocate a comparable budget
for RAM and for disk storage, which
is about 100 times less expensive per
Tbyte than RAM. Table 1 captures
this 1:100 RAM:disk capacity ratio,
along with Amdahl’s laws applied to
various system powers.
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tasks involving Pbytes of information
require petascale storage and I/O
bandwidth. In addition, the data must
be reprocessed each time a new algo-
rithm emerges or researchers pose a
fundamental new question, generat-
ing even more I/O. 

More importantly, to be useful,
these databases require the ability to
process information at a semantic
level. The data must be curated with
metadata, stored under a schema with
a controlled vocabulary, and orga-
nized for quick and efficient tempo-
ral, spatial, and associative search.
Petascale database systems will be a
major part of any successful petascale
computational facility and require
substantial software investment. 

DATA LOCALITY
Moving a byte of data across the

Internet has a well-defined cost
(http://doi.acm.org/10.1145/945450).
Moving data to a remote computing
facility is worthwhile only if per-
forming the analysis requires more
than 100,000 CPU cycles per byte of
data. SETI@home, cryptography, and
signal processing have such CPU-
intensive profiles. However, most sci-
entific tasks are more in line with
Amdahl’s laws and much more infor-
mation-intensive, with CPU:IO ratios
well below 10,000:1.  

For less CPU-intensive tasks, colo-
cating the computation with the data
is preferable. In a data-intensive world
where Pbytes are common, however,
it’s important to colocate computing
power with the databases rather than
moving the data across the Internet to
a “free” CPU. If the data must be
moved, it makes sense to store a copy
at the destination for later reuse.

Scaled to a petaoperations-per-sec-
ond machine, Amdahl’s laws imply
the need for 

• parallel software to use that
processor array and a million disks
in parallel; 

• a Pbyte of RAM;
• 100 Tbytes/s of I/O bandwidth and

an I/O fabric to support it;
• one million disk devices to deliver

that bandwidth (at 100 Mbytes/
s/disk); and

• 100,000 disks storing 100 Pbytes
of data produced and consumed
(at 1 Tbyte/disk), which is 10 times
fewer than the number of disks
required by the bandwidth require-
ment. 

A million disks to support a petas-
cale processor’s IO needs is a daunt-
ing number. If a petascale system is
configured with fewer disks, the
processors will probably spend most
of their time waiting for IO and mem-
ory—as is often the case today. 

Petascale systems
There are precedents for such petas-

cale distributed systems at Google,
Yahoo!, AOL, and MSN (http://doi.
acm.org/10.1145/945450). These sys-
tems have tens of thousands of pro-
cessing nodes (approximating a peta-
operation per second) and have about
100,000 locally attached disks to
deliver the requisite bandwidth.
Although they aren’t commodity sys-
tems, they’re in everyday use in many
data centers.  

Once empirical or simulation data
is captured, huge computational
resources are needed to analyze the
data and visualize the results. Analysis

Managing this data movement and
caching poses a substantial software
challenge. Much current middleware
assumes that data movement is free
and discards copied data after use.  

COMPUTATIONAL 
PROBLEM SIZES 

Scientific computation task sizes
depend on the product of many inde-
pendent factors. Quantities formed as
a product of independent random vari-
ables follow a lognormal distribution
(E.W. Montroll and M.F. Shlesinger,
“Maximum Entropy Formalism,
Fractals, Scaling Phenomena, and 1/f
Noise: A Tale of Tails,” J. Statistical
Physics, vol. 32, no. 2, 1983, pp. 209-
230). As a result, the sizes of scientific
computational problems obey a power
law wherein the problem size and the
number of such problems are inversely
proportional—there are a small num-
ber of huge jobs and a huge number of
small jobs.

This situation is quite evident in US
computing today. Thirty years ago,
supercomputers were the mainstay of
computational science. However,
today’s four-tier architecture—includ-
ing tier-1 supercomputers, tier-2
regional centers, tier-3 departmental
Beowulf clusters, and tier-4 single
workstations—reflects the problem-
size power law. 

BALANCED 
CYBERINFRASTRUCTURE

What’s the best allocation of cyber-
infrastructure investments in light of
Amdahl’s laws, the problem-size
power law, and the move to data-cen-
tric science? There certainly must be
two high-end tier-1 international data
centers serving each discipline that 

Table 1. Amdahl’s laws applied to various system powers.

Operations Disks for that bandwidth Disk byte capacity Disks for that capacity 
per second RAM Disk I/O bytes/s at 100 Mbytes/s/disk  (100x RAM) at 1 Tbyte/disk

109 Gigabyte 108 1 1011 1 
1012 Terabyte 1011 1,000 1014 100 
1015 Petabyte 1014 1,000,000 1017 100,000 
1018 Exabyte 1017 1,000,000,000 1020 100,000,000 
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• allow competition,
• encourage design diversity, and 
• leapfrog each other every two

years.  

These tier-1 facilities should contain
much of science’s huge archival
datasets and can only be built as a
national or international priority. 

What should US government agen-
cies and industry do about the other
tiers? They could make funding the
tier-2 and tier-3 systems entirely the
universities’ responsibility, but that
would be a mistake. 

We believe that available resources
should be allocated to benefit the

broadest cross-section of the scientific
community. Given the power-law dis-
tribution of problem sizes, this means
that about half of funding agency
resources should be spent on tier-1
centers at the petascale level and the
other half dedicated to tier-2 and 
tier-3 centers on a cost-sharing basis,
as Figure 1 shows.

One of the most data-intensive sci-
ence projects to date, the CERN Large
Hadron Collider (http://lhc.web.
cern.ch/lhc), has adopted exactly such
a multitiered architecture. The hier-
archy of an increasing number of tier-
2 and tier-3 analysis facilities provides
impedance matching between the
individual scientists and the huge 
tier-1 data archives. At the same time,
the tier-2 and tier-3 nodes provide
complete replication of tier-1 datasets. 

EXAMPLE TIER-2 NODE
Most funding for tier-2 and tier-3

centers today splits costs between the
federal government and the host insti-
tution.  It’s difficult for universities to
obtain private donations for comput-
ing resources because they depreciate
so quickly. Donors generally prefer to
give money for buildings or endowed
positions, which have a long-term

staying value. Government funding is
therefore crucial for tier-2 and tier-3
centers in a cost-sharing arrangement
with the hosting institution. 

For example, The Johns Hopkins
University received a National Science
Foundation grant toward the comput-
ers for a tier-2 center it’s building. JHU
matched the NSF funds 125 percent to
provide the hosting facility and staff to
run it. Other institutions have had sim-
ilar experiences setting up large com-
puting facilities. The price of
computers is less than half the cost,
and universities can meet those infra-
structure demands only if federal agen-
cies seed the tier-2 and tier-3 centers.

P lacing all the financial resources
at one end of the power-law dis-
tribution would create an unnat-

ural infrastructure incapable of
meeting the increasingly data-centric
requirements of most midscale scien-
tific experiments. At the system level,
focusing on CPU harvesting would
also create an imbalance. Funding
agencies should support balanced sys-
tems, not just CPU farms, as well as
petascale IO and networking. They
should also allocate resources for a
balanced tier-1 through tier-3 cyberin-
frastructure. ■
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Figure 1. Balanced cyberinfrastructure.
Government should fund tier-1 centers
and half of tier-2 and tier-3 centers on a
cost-sharing basis.


